Hopf-cyclic cohomology of the Connes–Moscovici Hopf algebras with infinite dimensional coefficients View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-12

AUTHORS

B. Rangipour, S. Sütlü, F. Yazdani Aliabadi

ABSTRACT

We discuss a new strategy for the computation of the Hopf-cyclic cohomology of the Connes–Moscovici Hopf algebra Hn. More precisely, we introduce a multiplicative structure on the Hopf-cyclic complex of Hn, and we show that the van Est type characteristic homomorphism from the Hopf-cyclic complex of Hn to the Gelfand–Fuks cohomology of the Lie algebra Wn of formal vector fields on Rn respects this multiplicative structure. We then illustrate the machinery for n=1. More... »

PAGES

927-969

References to SciGraph publications

  • 1970-10. Upper bounds for cohomology of infinite-dimensional Lie algebras in FUNCTIONAL ANALYSIS AND ITS APPLICATIONS
  • 1970-04. On the cohomologies of infinite — dimensional Lie algebras of vector fields in FUNCTIONAL ANALYSIS AND ITS APPLICATIONS
  • 1974-04. Cohomologies of the Lie algebra of formal vector fields with coefficients in its adjoint space and variations of characteristic classes of foliations in FUNCTIONAL ANALYSIS AND ITS APPLICATIONS
  • 1998-11. Hopf Algebras, Cyclic Cohomology and the Transverse Index Theorem in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 1969-07. Cohomologies of Lie algebra of tangential vector fields of a smooth manifold in FUNCTIONAL ANALYSIS AND ITS APPLICATIONS
  • 2012-11. SAYD Modules over Lie-Hopf Algebras in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 2012-04. A van Est Isomorphism for Bicrossed Product Hopf Algebras in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 1986. Cohomology of Infinite-Dimensional Lie Algebras in NONE
  • 1969-04. Cohomologies of Lie algebras of vector fields on a manifold in FUNCTIONAL ANALYSIS AND ITS APPLICATIONS
  • 1970-07. Cohomologies of Lie algebra of vector fields with nontrivial coefficients in FUNCTIONAL ANALYSIS AND ITS APPLICATIONS
  • 1995-03. The local index formula in noncommutative geometry in GEOMETRIC AND FUNCTIONAL ANALYSIS
  • 1993. Natural Operations in Differential Geometry in NONE
  • 1994-03. The hidden group structure of quantum groups: Strong duality, rigidity and preferred deformations in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 1997-02. Bicross-Product Structure of Affine Quantum Groups in LETTERS IN MATHEMATICAL PHYSICS
  • 1998-12. Hopf Algebras, Renormalization and Noncommutative Geometry in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s40062-018-0205-7

    DOI

    http://dx.doi.org/10.1007/s40062-018-0205-7

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1103676653


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of New Brunswick", 
              "id": "https://www.grid.ac/institutes/grid.266820.8", 
              "name": [
                "Department of Mathematics and Statistics, University of New Brunswick, Fredericton, NB, Canada"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Rangipour", 
            "givenName": "B.", 
            "id": "sg:person.01323013636.90", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01323013636.90"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "I\u015f\u0131k University", 
              "id": "https://www.grid.ac/institutes/grid.58192.37", 
              "name": [
                "Department of Mathematics, I\u015f\u0131k University, \u015eile, 34980, Istanbul, Turkey"
              ], 
              "type": "Organization"
            }, 
            "familyName": "S\u00fctl\u00fc", 
            "givenName": "S.", 
            "id": "sg:person.012120121167.01", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012120121167.01"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of New Brunswick", 
              "id": "https://www.grid.ac/institutes/grid.266820.8", 
              "name": [
                "Department of Mathematics and Statistics, University of New Brunswick, Fredericton, NB, Canada"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Aliabadi", 
            "givenName": "F. Yazdani", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/j.aim.2015.02.003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000143335"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0019-3577(98)80024-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008527408"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jalgebra.2006.09.031", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009906025"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0040-9383(94)00056-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009969391"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0022-4049(94)90017-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012302499"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1090/s0002-9947-1953-0052438-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012813386"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1090/s0002-9904-1970-12576-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015062873"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4684-8765-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015826073", 
              "https://doi.org/10.1007/978-1-4684-8765-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4684-8765-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015826073", 
              "https://doi.org/10.1007/978-1-4684-8765-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.aim.2006.06.008", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018131919"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00220-012-1586-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018522300", 
              "https://doi.org/10.1007/s00220-012-1586-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01075238", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019472125", 
              "https://doi.org/10.1007/bf01075238"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01075238", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019472125", 
              "https://doi.org/10.1007/bf01075238"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01895667", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020430055", 
              "https://doi.org/10.1007/bf01895667"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01895667", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020430055", 
              "https://doi.org/10.1007/bf01895667"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1007318108923", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021477804", 
              "https://doi.org/10.1023/a:1007318108923"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/00927878108822621", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022411673"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.aim.2008.09.017", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023008611"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s002200050477", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024718886", 
              "https://doi.org/10.1007/s002200050477"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.aim.2011.02.010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027675568"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01094489", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029656844", 
              "https://doi.org/10.1007/bf01094489"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01094489", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029656844", 
              "https://doi.org/10.1007/bf01094489"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0040-9383(76)90038-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032103133"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01078594", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034716399", 
              "https://doi.org/10.1007/bf01078594"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01078594", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034716399", 
              "https://doi.org/10.1007/bf01078594"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.crma.2003.11.037", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039442954"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00220-012-1452-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040159133", 
              "https://doi.org/10.1007/s00220-012-1452-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01676621", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043605395", 
              "https://doi.org/10.1007/bf01676621"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02099415", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044665690", 
              "https://doi.org/10.1007/bf02099415"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02099415", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044665690", 
              "https://doi.org/10.1007/bf02099415"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01674021", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045393139", 
              "https://doi.org/10.1007/bf01674021"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1047202535", 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-662-02950-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047202535", 
              "https://doi.org/10.1007/978-3-662-02950-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-662-02950-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047202535", 
              "https://doi.org/10.1007/978-3-662-02950-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.crma.2003.11.036", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049449978"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1006/jabr.1994.1004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049889647"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01075975", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052795698", 
              "https://doi.org/10.1007/bf01075975"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01075975", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052795698", 
              "https://doi.org/10.1007/bf01075975"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0370-2693(94)90699-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053223635"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0370-2693(94)90699-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053223635"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s002200050499", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053421103", 
              "https://doi.org/10.1007/s002200050499"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0021-8693(90)90099-a", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053493690"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1007/s10977-005-1501-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1054523268"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1007/s10977-005-1501-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1054523268"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1023/a:1020306706620", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056310180"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1070/sm1968v005n03abeh003627", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058198741"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1142/s0129055x05002467", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062898044"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1142/s0129055x05002467", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062898044"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2307/1969740", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069675105"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4171/jncg/213", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1072318505"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4171/jncg/11-1-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084454604"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/cbo9781139644136", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1098665610"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/cbo9780511613104", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1098700802"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4171/096", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1099348611"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018-12", 
        "datePublishedReg": "2018-12-01", 
        "description": "We discuss a new strategy for the computation of the Hopf-cyclic cohomology of the Connes\u2013Moscovici Hopf algebra Hn. More precisely, we introduce a multiplicative structure on the Hopf-cyclic complex of Hn, and we show that the van Est type characteristic homomorphism from the Hopf-cyclic complex of Hn to the Gelfand\u2013Fuks cohomology of the Lie algebra Wn of formal vector fields on Rn respects this multiplicative structure. We then illustrate the machinery for n=1.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s40062-018-0205-7", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1136700", 
            "issn": [
              "2193-8407", 
              "1512-2891"
            ], 
            "name": "Journal of Homotopy and Related Structures", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "4", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "13"
          }
        ], 
        "name": "Hopf-cyclic cohomology of the Connes\u2013Moscovici Hopf algebras with infinite dimensional coefficients", 
        "pagination": "927-969", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "dcd9321f9953cbf48109ee085462815d288a4c21ad9141478c509a48ffcb6e29"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s40062-018-0205-7"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1103676653"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s40062-018-0205-7", 
          "https://app.dimensions.ai/details/publication/pub.1103676653"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T20:56", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8684_00000573.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs40062-018-0205-7"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s40062-018-0205-7'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s40062-018-0205-7'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s40062-018-0205-7'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s40062-018-0205-7'


     

    This table displays all metadata directly associated to this object as RDF triples.

    220 TRIPLES      21 PREDICATES      70 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s40062-018-0205-7 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author Nc9cfa9870f7544d182e1dfcae1d8de8d
    4 schema:citation sg:pub.10.1007/978-1-4684-8765-7
    5 sg:pub.10.1007/978-3-662-02950-3
    6 sg:pub.10.1007/bf01075238
    7 sg:pub.10.1007/bf01075975
    8 sg:pub.10.1007/bf01078594
    9 sg:pub.10.1007/bf01094489
    10 sg:pub.10.1007/bf01674021
    11 sg:pub.10.1007/bf01676621
    12 sg:pub.10.1007/bf01895667
    13 sg:pub.10.1007/bf02099415
    14 sg:pub.10.1007/s00220-012-1452-9
    15 sg:pub.10.1007/s00220-012-1586-9
    16 sg:pub.10.1007/s002200050477
    17 sg:pub.10.1007/s002200050499
    18 sg:pub.10.1023/a:1007318108923
    19 https://app.dimensions.ai/details/publication/pub.1047202535
    20 https://doi.org/10.1006/jabr.1994.1004
    21 https://doi.org/10.1007/s10977-005-1501-7
    22 https://doi.org/10.1016/0021-8693(90)90099-a
    23 https://doi.org/10.1016/0022-4049(94)90017-5
    24 https://doi.org/10.1016/0040-9383(76)90038-0
    25 https://doi.org/10.1016/0040-9383(94)00056-5
    26 https://doi.org/10.1016/0370-2693(94)90699-8
    27 https://doi.org/10.1016/j.aim.2006.06.008
    28 https://doi.org/10.1016/j.aim.2008.09.017
    29 https://doi.org/10.1016/j.aim.2011.02.010
    30 https://doi.org/10.1016/j.aim.2015.02.003
    31 https://doi.org/10.1016/j.crma.2003.11.036
    32 https://doi.org/10.1016/j.crma.2003.11.037
    33 https://doi.org/10.1016/j.jalgebra.2006.09.031
    34 https://doi.org/10.1016/s0019-3577(98)80024-4
    35 https://doi.org/10.1017/cbo9780511613104
    36 https://doi.org/10.1017/cbo9781139644136
    37 https://doi.org/10.1023/a:1020306706620
    38 https://doi.org/10.1070/sm1968v005n03abeh003627
    39 https://doi.org/10.1080/00927878108822621
    40 https://doi.org/10.1090/s0002-9904-1970-12576-9
    41 https://doi.org/10.1090/s0002-9947-1953-0052438-8
    42 https://doi.org/10.1142/s0129055x05002467
    43 https://doi.org/10.2307/1969740
    44 https://doi.org/10.4171/096
    45 https://doi.org/10.4171/jncg/11-1-3
    46 https://doi.org/10.4171/jncg/213
    47 schema:datePublished 2018-12
    48 schema:datePublishedReg 2018-12-01
    49 schema:description We discuss a new strategy for the computation of the Hopf-cyclic cohomology of the Connes–Moscovici Hopf algebra Hn. More precisely, we introduce a multiplicative structure on the Hopf-cyclic complex of Hn, and we show that the van Est type characteristic homomorphism from the Hopf-cyclic complex of Hn to the Gelfand–Fuks cohomology of the Lie algebra Wn of formal vector fields on Rn respects this multiplicative structure. We then illustrate the machinery for n=1.
    50 schema:genre research_article
    51 schema:inLanguage en
    52 schema:isAccessibleForFree true
    53 schema:isPartOf Nd2a695da356643b1828a754a0d5f0a1a
    54 Ne3d38c57e85c4baa8d52a38cf16a695d
    55 sg:journal.1136700
    56 schema:name Hopf-cyclic cohomology of the Connes–Moscovici Hopf algebras with infinite dimensional coefficients
    57 schema:pagination 927-969
    58 schema:productId N117190995d6f477c95d0054fc5340d57
    59 N4d4a364861964eeab52779d1aa384ca6
    60 N5fe50257f55540eabeff8f240de971c2
    61 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103676653
    62 https://doi.org/10.1007/s40062-018-0205-7
    63 schema:sdDatePublished 2019-04-10T20:56
    64 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    65 schema:sdPublisher Nac443b830f154a59a234546d2de63ed6
    66 schema:url https://link.springer.com/10.1007%2Fs40062-018-0205-7
    67 sgo:license sg:explorer/license/
    68 sgo:sdDataset articles
    69 rdf:type schema:ScholarlyArticle
    70 N063875fc8abe4792bcb334d0adde46e9 rdf:first Ncdbee614ff284261a24bd32d872559a3
    71 rdf:rest rdf:nil
    72 N117190995d6f477c95d0054fc5340d57 schema:name dimensions_id
    73 schema:value pub.1103676653
    74 rdf:type schema:PropertyValue
    75 N4d4a364861964eeab52779d1aa384ca6 schema:name readcube_id
    76 schema:value dcd9321f9953cbf48109ee085462815d288a4c21ad9141478c509a48ffcb6e29
    77 rdf:type schema:PropertyValue
    78 N5fe50257f55540eabeff8f240de971c2 schema:name doi
    79 schema:value 10.1007/s40062-018-0205-7
    80 rdf:type schema:PropertyValue
    81 Nac443b830f154a59a234546d2de63ed6 schema:name Springer Nature - SN SciGraph project
    82 rdf:type schema:Organization
    83 Nc9cfa9870f7544d182e1dfcae1d8de8d rdf:first sg:person.01323013636.90
    84 rdf:rest Nd6655e41078542b4b0902d2d623e0f0c
    85 Ncdbee614ff284261a24bd32d872559a3 schema:affiliation https://www.grid.ac/institutes/grid.266820.8
    86 schema:familyName Aliabadi
    87 schema:givenName F. Yazdani
    88 rdf:type schema:Person
    89 Nd2a695da356643b1828a754a0d5f0a1a schema:volumeNumber 13
    90 rdf:type schema:PublicationVolume
    91 Nd6655e41078542b4b0902d2d623e0f0c rdf:first sg:person.012120121167.01
    92 rdf:rest N063875fc8abe4792bcb334d0adde46e9
    93 Ne3d38c57e85c4baa8d52a38cf16a695d schema:issueNumber 4
    94 rdf:type schema:PublicationIssue
    95 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    96 schema:name Mathematical Sciences
    97 rdf:type schema:DefinedTerm
    98 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    99 schema:name Pure Mathematics
    100 rdf:type schema:DefinedTerm
    101 sg:journal.1136700 schema:issn 1512-2891
    102 2193-8407
    103 schema:name Journal of Homotopy and Related Structures
    104 rdf:type schema:Periodical
    105 sg:person.012120121167.01 schema:affiliation https://www.grid.ac/institutes/grid.58192.37
    106 schema:familyName Sütlü
    107 schema:givenName S.
    108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012120121167.01
    109 rdf:type schema:Person
    110 sg:person.01323013636.90 schema:affiliation https://www.grid.ac/institutes/grid.266820.8
    111 schema:familyName Rangipour
    112 schema:givenName B.
    113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01323013636.90
    114 rdf:type schema:Person
    115 sg:pub.10.1007/978-1-4684-8765-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015826073
    116 https://doi.org/10.1007/978-1-4684-8765-7
    117 rdf:type schema:CreativeWork
    118 sg:pub.10.1007/978-3-662-02950-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047202535
    119 https://doi.org/10.1007/978-3-662-02950-3
    120 rdf:type schema:CreativeWork
    121 sg:pub.10.1007/bf01075238 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019472125
    122 https://doi.org/10.1007/bf01075238
    123 rdf:type schema:CreativeWork
    124 sg:pub.10.1007/bf01075975 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052795698
    125 https://doi.org/10.1007/bf01075975
    126 rdf:type schema:CreativeWork
    127 sg:pub.10.1007/bf01078594 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034716399
    128 https://doi.org/10.1007/bf01078594
    129 rdf:type schema:CreativeWork
    130 sg:pub.10.1007/bf01094489 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029656844
    131 https://doi.org/10.1007/bf01094489
    132 rdf:type schema:CreativeWork
    133 sg:pub.10.1007/bf01674021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045393139
    134 https://doi.org/10.1007/bf01674021
    135 rdf:type schema:CreativeWork
    136 sg:pub.10.1007/bf01676621 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043605395
    137 https://doi.org/10.1007/bf01676621
    138 rdf:type schema:CreativeWork
    139 sg:pub.10.1007/bf01895667 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020430055
    140 https://doi.org/10.1007/bf01895667
    141 rdf:type schema:CreativeWork
    142 sg:pub.10.1007/bf02099415 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044665690
    143 https://doi.org/10.1007/bf02099415
    144 rdf:type schema:CreativeWork
    145 sg:pub.10.1007/s00220-012-1452-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040159133
    146 https://doi.org/10.1007/s00220-012-1452-9
    147 rdf:type schema:CreativeWork
    148 sg:pub.10.1007/s00220-012-1586-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018522300
    149 https://doi.org/10.1007/s00220-012-1586-9
    150 rdf:type schema:CreativeWork
    151 sg:pub.10.1007/s002200050477 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024718886
    152 https://doi.org/10.1007/s002200050477
    153 rdf:type schema:CreativeWork
    154 sg:pub.10.1007/s002200050499 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053421103
    155 https://doi.org/10.1007/s002200050499
    156 rdf:type schema:CreativeWork
    157 sg:pub.10.1023/a:1007318108923 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021477804
    158 https://doi.org/10.1023/a:1007318108923
    159 rdf:type schema:CreativeWork
    160 https://app.dimensions.ai/details/publication/pub.1047202535 schema:CreativeWork
    161 https://doi.org/10.1006/jabr.1994.1004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049889647
    162 rdf:type schema:CreativeWork
    163 https://doi.org/10.1007/s10977-005-1501-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054523268
    164 rdf:type schema:CreativeWork
    165 https://doi.org/10.1016/0021-8693(90)90099-a schema:sameAs https://app.dimensions.ai/details/publication/pub.1053493690
    166 rdf:type schema:CreativeWork
    167 https://doi.org/10.1016/0022-4049(94)90017-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012302499
    168 rdf:type schema:CreativeWork
    169 https://doi.org/10.1016/0040-9383(76)90038-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032103133
    170 rdf:type schema:CreativeWork
    171 https://doi.org/10.1016/0040-9383(94)00056-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009969391
    172 rdf:type schema:CreativeWork
    173 https://doi.org/10.1016/0370-2693(94)90699-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053223635
    174 rdf:type schema:CreativeWork
    175 https://doi.org/10.1016/j.aim.2006.06.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018131919
    176 rdf:type schema:CreativeWork
    177 https://doi.org/10.1016/j.aim.2008.09.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023008611
    178 rdf:type schema:CreativeWork
    179 https://doi.org/10.1016/j.aim.2011.02.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027675568
    180 rdf:type schema:CreativeWork
    181 https://doi.org/10.1016/j.aim.2015.02.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000143335
    182 rdf:type schema:CreativeWork
    183 https://doi.org/10.1016/j.crma.2003.11.036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049449978
    184 rdf:type schema:CreativeWork
    185 https://doi.org/10.1016/j.crma.2003.11.037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039442954
    186 rdf:type schema:CreativeWork
    187 https://doi.org/10.1016/j.jalgebra.2006.09.031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009906025
    188 rdf:type schema:CreativeWork
    189 https://doi.org/10.1016/s0019-3577(98)80024-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008527408
    190 rdf:type schema:CreativeWork
    191 https://doi.org/10.1017/cbo9780511613104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098700802
    192 rdf:type schema:CreativeWork
    193 https://doi.org/10.1017/cbo9781139644136 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098665610
    194 rdf:type schema:CreativeWork
    195 https://doi.org/10.1023/a:1020306706620 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056310180
    196 rdf:type schema:CreativeWork
    197 https://doi.org/10.1070/sm1968v005n03abeh003627 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058198741
    198 rdf:type schema:CreativeWork
    199 https://doi.org/10.1080/00927878108822621 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022411673
    200 rdf:type schema:CreativeWork
    201 https://doi.org/10.1090/s0002-9904-1970-12576-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015062873
    202 rdf:type schema:CreativeWork
    203 https://doi.org/10.1090/s0002-9947-1953-0052438-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012813386
    204 rdf:type schema:CreativeWork
    205 https://doi.org/10.1142/s0129055x05002467 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062898044
    206 rdf:type schema:CreativeWork
    207 https://doi.org/10.2307/1969740 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069675105
    208 rdf:type schema:CreativeWork
    209 https://doi.org/10.4171/096 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099348611
    210 rdf:type schema:CreativeWork
    211 https://doi.org/10.4171/jncg/11-1-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084454604
    212 rdf:type schema:CreativeWork
    213 https://doi.org/10.4171/jncg/213 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072318505
    214 rdf:type schema:CreativeWork
    215 https://www.grid.ac/institutes/grid.266820.8 schema:alternateName University of New Brunswick
    216 schema:name Department of Mathematics and Statistics, University of New Brunswick, Fredericton, NB, Canada
    217 rdf:type schema:Organization
    218 https://www.grid.ac/institutes/grid.58192.37 schema:alternateName Işık University
    219 schema:name Department of Mathematics, Işık University, Şile, 34980, Istanbul, Turkey
    220 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...