A note on the composition product of symmetric sequences View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2012-10

AUTHORS

Michael Ching

ABSTRACT

We consider the composition product of symmetric sequences in the case where the underlying symmetric monoidal structure does not commute with coproducts. Even though this composition product is not a monoidal structure on symmetric sequences, it has enough structure, namely that of a ‘normal oplax’ monoidal product, to be able to define monoids (which are then operads on the underlying category) and make a bar construction. The main benefit of this work is in the dual setting, where it allows us to define a cobar construction for cooperads. More... »

PAGES

237-254

References to SciGraph publications

  • 2011-02. Algebras of Higher Operads as Enriched Categories in APPLIED CATEGORICAL STRUCTURES
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s40062-012-0007-2

    DOI

    http://dx.doi.org/10.1007/s40062-012-0007-2

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1039450336


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biochemistry and Cell Biology", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Amherst College", 
              "id": "https://www.grid.ac/institutes/grid.252152.3", 
              "name": [
                "Department of Mathematics, Amherst College, 01002, Amherst, MA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ching", 
            "givenName": "Michael", 
            "id": "sg:person.014360142074.09", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014360142074.09"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s10485-008-9179-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032706501", 
              "https://doi.org/10.1007/s10485-008-9179-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1070/sm1982v043n01abeh002437", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058200035"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2140/gt.2005.9.833", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069060026"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1090/conm/318/05545", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1089200499"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/cbo9780511525896", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1098679857"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2012-10", 
        "datePublishedReg": "2012-10-01", 
        "description": "We consider the composition product of symmetric sequences in the case where the underlying symmetric monoidal structure does not commute with coproducts. Even though this composition product is not a monoidal structure on symmetric sequences, it has enough structure, namely that of a \u2018normal oplax\u2019 monoidal product, to be able to define monoids (which are then operads on the underlying category) and make a bar construction. The main benefit of this work is in the dual setting, where it allows us to define a cobar construction for cooperads.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s40062-012-0007-2", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1136700", 
            "issn": [
              "2193-8407", 
              "1512-2891"
            ], 
            "name": "Journal of Homotopy and Related Structures", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "7"
          }
        ], 
        "name": "A note on the composition product of symmetric sequences", 
        "pagination": "237-254", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "bbec66e9baa5716f475aec181f75cf541a37ae5946b0387a2a3f1356e1485144"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s40062-012-0007-2"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1039450336"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s40062-012-0007-2", 
          "https://app.dimensions.ai/details/publication/pub.1039450336"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T10:27", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000349_0000000349/records_113639_00000001.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs40062-012-0007-2"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s40062-012-0007-2'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s40062-012-0007-2'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s40062-012-0007-2'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s40062-012-0007-2'


     

    This table displays all metadata directly associated to this object as RDF triples.

    77 TRIPLES      21 PREDICATES      32 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s40062-012-0007-2 schema:about anzsrc-for:06
    2 anzsrc-for:0601
    3 schema:author N7312d44e7a8942ba9ec618360913e4b5
    4 schema:citation sg:pub.10.1007/s10485-008-9179-7
    5 https://doi.org/10.1017/cbo9780511525896
    6 https://doi.org/10.1070/sm1982v043n01abeh002437
    7 https://doi.org/10.1090/conm/318/05545
    8 https://doi.org/10.2140/gt.2005.9.833
    9 schema:datePublished 2012-10
    10 schema:datePublishedReg 2012-10-01
    11 schema:description We consider the composition product of symmetric sequences in the case where the underlying symmetric monoidal structure does not commute with coproducts. Even though this composition product is not a monoidal structure on symmetric sequences, it has enough structure, namely that of a ‘normal oplax’ monoidal product, to be able to define monoids (which are then operads on the underlying category) and make a bar construction. The main benefit of this work is in the dual setting, where it allows us to define a cobar construction for cooperads.
    12 schema:genre research_article
    13 schema:inLanguage en
    14 schema:isAccessibleForFree true
    15 schema:isPartOf N73acc4616b1c4c9e97d7e4cbea6975e9
    16 Na811b2b44d3e40d9b69dc18fb918ce22
    17 sg:journal.1136700
    18 schema:name A note on the composition product of symmetric sequences
    19 schema:pagination 237-254
    20 schema:productId N5f153d789e31459d8bcf0f5dac1d5c67
    21 Nda5664fea60d4c97b26e5480e2c80085
    22 Nf6250d36cfe945a49171ea03333aef6a
    23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039450336
    24 https://doi.org/10.1007/s40062-012-0007-2
    25 schema:sdDatePublished 2019-04-11T10:27
    26 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    27 schema:sdPublisher N6df43c604624462ebeebcffd366e9ad7
    28 schema:url https://link.springer.com/10.1007%2Fs40062-012-0007-2
    29 sgo:license sg:explorer/license/
    30 sgo:sdDataset articles
    31 rdf:type schema:ScholarlyArticle
    32 N5f153d789e31459d8bcf0f5dac1d5c67 schema:name doi
    33 schema:value 10.1007/s40062-012-0007-2
    34 rdf:type schema:PropertyValue
    35 N6df43c604624462ebeebcffd366e9ad7 schema:name Springer Nature - SN SciGraph project
    36 rdf:type schema:Organization
    37 N7312d44e7a8942ba9ec618360913e4b5 rdf:first sg:person.014360142074.09
    38 rdf:rest rdf:nil
    39 N73acc4616b1c4c9e97d7e4cbea6975e9 schema:volumeNumber 7
    40 rdf:type schema:PublicationVolume
    41 Na811b2b44d3e40d9b69dc18fb918ce22 schema:issueNumber 2
    42 rdf:type schema:PublicationIssue
    43 Nda5664fea60d4c97b26e5480e2c80085 schema:name readcube_id
    44 schema:value bbec66e9baa5716f475aec181f75cf541a37ae5946b0387a2a3f1356e1485144
    45 rdf:type schema:PropertyValue
    46 Nf6250d36cfe945a49171ea03333aef6a schema:name dimensions_id
    47 schema:value pub.1039450336
    48 rdf:type schema:PropertyValue
    49 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    50 schema:name Biological Sciences
    51 rdf:type schema:DefinedTerm
    52 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
    53 schema:name Biochemistry and Cell Biology
    54 rdf:type schema:DefinedTerm
    55 sg:journal.1136700 schema:issn 1512-2891
    56 2193-8407
    57 schema:name Journal of Homotopy and Related Structures
    58 rdf:type schema:Periodical
    59 sg:person.014360142074.09 schema:affiliation https://www.grid.ac/institutes/grid.252152.3
    60 schema:familyName Ching
    61 schema:givenName Michael
    62 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014360142074.09
    63 rdf:type schema:Person
    64 sg:pub.10.1007/s10485-008-9179-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032706501
    65 https://doi.org/10.1007/s10485-008-9179-7
    66 rdf:type schema:CreativeWork
    67 https://doi.org/10.1017/cbo9780511525896 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098679857
    68 rdf:type schema:CreativeWork
    69 https://doi.org/10.1070/sm1982v043n01abeh002437 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058200035
    70 rdf:type schema:CreativeWork
    71 https://doi.org/10.1090/conm/318/05545 schema:sameAs https://app.dimensions.ai/details/publication/pub.1089200499
    72 rdf:type schema:CreativeWork
    73 https://doi.org/10.2140/gt.2005.9.833 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069060026
    74 rdf:type schema:CreativeWork
    75 https://www.grid.ac/institutes/grid.252152.3 schema:alternateName Amherst College
    76 schema:name Department of Mathematics, Amherst College, 01002, Amherst, MA, USA
    77 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...