A note on the composition product of symmetric sequences View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2012-10

AUTHORS

Michael Ching

ABSTRACT

We consider the composition product of symmetric sequences in the case where the underlying symmetric monoidal structure does not commute with coproducts. Even though this composition product is not a monoidal structure on symmetric sequences, it has enough structure, namely that of a ‘normal oplax’ monoidal product, to be able to define monoids (which are then operads on the underlying category) and make a bar construction. The main benefit of this work is in the dual setting, where it allows us to define a cobar construction for cooperads. More... »

PAGES

237-254

References to SciGraph publications

  • 2011-02. Algebras of Higher Operads as Enriched Categories in APPLIED CATEGORICAL STRUCTURES
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s40062-012-0007-2

    DOI

    http://dx.doi.org/10.1007/s40062-012-0007-2

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1039450336


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biochemistry and Cell Biology", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Amherst College", 
              "id": "https://www.grid.ac/institutes/grid.252152.3", 
              "name": [
                "Department of Mathematics, Amherst College, 01002, Amherst, MA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ching", 
            "givenName": "Michael", 
            "id": "sg:person.014360142074.09", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014360142074.09"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s10485-008-9179-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032706501", 
              "https://doi.org/10.1007/s10485-008-9179-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1070/sm1982v043n01abeh002437", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058200035"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2140/gt.2005.9.833", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069060026"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1090/conm/318/05545", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1089200499"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/cbo9780511525896", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1098679857"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2012-10", 
        "datePublishedReg": "2012-10-01", 
        "description": "We consider the composition product of symmetric sequences in the case where the underlying symmetric monoidal structure does not commute with coproducts. Even though this composition product is not a monoidal structure on symmetric sequences, it has enough structure, namely that of a \u2018normal oplax\u2019 monoidal product, to be able to define monoids (which are then operads on the underlying category) and make a bar construction. The main benefit of this work is in the dual setting, where it allows us to define a cobar construction for cooperads.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s40062-012-0007-2", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1136700", 
            "issn": [
              "2193-8407", 
              "1512-2891"
            ], 
            "name": "Journal of Homotopy and Related Structures", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "7"
          }
        ], 
        "name": "A note on the composition product of symmetric sequences", 
        "pagination": "237-254", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "bbec66e9baa5716f475aec181f75cf541a37ae5946b0387a2a3f1356e1485144"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s40062-012-0007-2"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1039450336"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s40062-012-0007-2", 
          "https://app.dimensions.ai/details/publication/pub.1039450336"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T10:27", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000349_0000000349/records_113639_00000001.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs40062-012-0007-2"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s40062-012-0007-2'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s40062-012-0007-2'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s40062-012-0007-2'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s40062-012-0007-2'


     

    This table displays all metadata directly associated to this object as RDF triples.

    77 TRIPLES      21 PREDICATES      32 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s40062-012-0007-2 schema:about anzsrc-for:06
    2 anzsrc-for:0601
    3 schema:author Ndc845b7198f04ec59ef250daeb790c36
    4 schema:citation sg:pub.10.1007/s10485-008-9179-7
    5 https://doi.org/10.1017/cbo9780511525896
    6 https://doi.org/10.1070/sm1982v043n01abeh002437
    7 https://doi.org/10.1090/conm/318/05545
    8 https://doi.org/10.2140/gt.2005.9.833
    9 schema:datePublished 2012-10
    10 schema:datePublishedReg 2012-10-01
    11 schema:description We consider the composition product of symmetric sequences in the case where the underlying symmetric monoidal structure does not commute with coproducts. Even though this composition product is not a monoidal structure on symmetric sequences, it has enough structure, namely that of a ‘normal oplax’ monoidal product, to be able to define monoids (which are then operads on the underlying category) and make a bar construction. The main benefit of this work is in the dual setting, where it allows us to define a cobar construction for cooperads.
    12 schema:genre research_article
    13 schema:inLanguage en
    14 schema:isAccessibleForFree true
    15 schema:isPartOf N699541ab70e04977a92bd411043d885b
    16 N816d9c11a4c44acba2834aa27732aaf1
    17 sg:journal.1136700
    18 schema:name A note on the composition product of symmetric sequences
    19 schema:pagination 237-254
    20 schema:productId N01b94436b15540ee83d3b2bc478db68e
    21 N32695d03f005458e8cce2f4e873fb283
    22 N567c9874141e4a89b2974dcfe250cc73
    23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039450336
    24 https://doi.org/10.1007/s40062-012-0007-2
    25 schema:sdDatePublished 2019-04-11T10:27
    26 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    27 schema:sdPublisher Nf9b8f5c5ee4e4941a41a3037c3f26567
    28 schema:url https://link.springer.com/10.1007%2Fs40062-012-0007-2
    29 sgo:license sg:explorer/license/
    30 sgo:sdDataset articles
    31 rdf:type schema:ScholarlyArticle
    32 N01b94436b15540ee83d3b2bc478db68e schema:name doi
    33 schema:value 10.1007/s40062-012-0007-2
    34 rdf:type schema:PropertyValue
    35 N32695d03f005458e8cce2f4e873fb283 schema:name readcube_id
    36 schema:value bbec66e9baa5716f475aec181f75cf541a37ae5946b0387a2a3f1356e1485144
    37 rdf:type schema:PropertyValue
    38 N567c9874141e4a89b2974dcfe250cc73 schema:name dimensions_id
    39 schema:value pub.1039450336
    40 rdf:type schema:PropertyValue
    41 N699541ab70e04977a92bd411043d885b schema:volumeNumber 7
    42 rdf:type schema:PublicationVolume
    43 N816d9c11a4c44acba2834aa27732aaf1 schema:issueNumber 2
    44 rdf:type schema:PublicationIssue
    45 Ndc845b7198f04ec59ef250daeb790c36 rdf:first sg:person.014360142074.09
    46 rdf:rest rdf:nil
    47 Nf9b8f5c5ee4e4941a41a3037c3f26567 schema:name Springer Nature - SN SciGraph project
    48 rdf:type schema:Organization
    49 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    50 schema:name Biological Sciences
    51 rdf:type schema:DefinedTerm
    52 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
    53 schema:name Biochemistry and Cell Biology
    54 rdf:type schema:DefinedTerm
    55 sg:journal.1136700 schema:issn 1512-2891
    56 2193-8407
    57 schema:name Journal of Homotopy and Related Structures
    58 rdf:type schema:Periodical
    59 sg:person.014360142074.09 schema:affiliation https://www.grid.ac/institutes/grid.252152.3
    60 schema:familyName Ching
    61 schema:givenName Michael
    62 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014360142074.09
    63 rdf:type schema:Person
    64 sg:pub.10.1007/s10485-008-9179-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032706501
    65 https://doi.org/10.1007/s10485-008-9179-7
    66 rdf:type schema:CreativeWork
    67 https://doi.org/10.1017/cbo9780511525896 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098679857
    68 rdf:type schema:CreativeWork
    69 https://doi.org/10.1070/sm1982v043n01abeh002437 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058200035
    70 rdf:type schema:CreativeWork
    71 https://doi.org/10.1090/conm/318/05545 schema:sameAs https://app.dimensions.ai/details/publication/pub.1089200499
    72 rdf:type schema:CreativeWork
    73 https://doi.org/10.2140/gt.2005.9.833 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069060026
    74 rdf:type schema:CreativeWork
    75 https://www.grid.ac/institutes/grid.252152.3 schema:alternateName Amherst College
    76 schema:name Department of Mathematics, Amherst College, 01002, Amherst, MA, USA
    77 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...