Ontology type: schema:ScholarlyArticle
2021-11-09
AUTHORSKiwoong Kim, Yeonjin Yi, Hyunbok Lee
ABSTRACTA high device performance of organic light-emitting diodes (OLEDs) can be achieved by minimizing the hole injection barrier (HIB) at the anode interface. However, the work function of indium tin oxide (ITO) is not sufficiently high; thus, the use of an appropriate hole injection layer (HIL) is necessary. In this study, we demonstrated that bis(trifluoromethane)sulfonimide lithium salt (Li-TFSI) is an efficient HIL to decrease the HIB in OLEDs. The device performances of hole-only devices (HODs) and OLEDs were significantly enhanced by the insertion of the ultrathin Li-TFSI HIL between the N,N′-di(1-naphthyl)-N,N′-diphenyl-(1,1′-biphenyl)-4,4′-diamine (NPB) hole transport layer and ITO. In situ ultraviolet photoelectron spectroscopy measurements revealed that the work function of ITO was considerably increased by the deposition of the Li-TFSI HIL. Accordingly, the HIB from ITO to NPB was remarkably reduced. This is the origin of the hole injection improvements in the HODs and OLEDs with the Li-TFSI HIL. Thus, Li-TFSI would be an efficient interface modifier to increase the work function of the electrode and decrease the HIB in various electronic devices. More... »
PAGES961-965
http://scigraph.springernature.com/pub.10.1007/s40042-021-00324-7
DOIhttp://dx.doi.org/10.1007/s40042-021-00324-7
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1142471563
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Physical Sciences",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Department of Physics and van der Waals Materials Research Center, Yonsei University, 03722, Seoul, Republic of Korea",
"id": "http://www.grid.ac/institutes/grid.15444.30",
"name": [
"Department of Physics and van der Waals Materials Research Center, Yonsei University, 03722, Seoul, Republic of Korea"
],
"type": "Organization"
},
"familyName": "Kim",
"givenName": "Kiwoong",
"id": "sg:person.01110101660.49",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01110101660.49"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Physics and van der Waals Materials Research Center, Yonsei University, 03722, Seoul, Republic of Korea",
"id": "http://www.grid.ac/institutes/grid.15444.30",
"name": [
"Department of Physics and van der Waals Materials Research Center, Yonsei University, 03722, Seoul, Republic of Korea"
],
"type": "Organization"
},
"familyName": "Yi",
"givenName": "Yeonjin",
"id": "sg:person.01275230676.33",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01275230676.33"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Physics and Institute for Accelerator Science, Kangwon National University, 24341, Chuncheon, Republic of Korea",
"id": "http://www.grid.ac/institutes/grid.412010.6",
"name": [
"Department of Physics and Institute for Accelerator Science, Kangwon National University, 24341, Chuncheon, Republic of Korea"
],
"type": "Organization"
},
"familyName": "Lee",
"givenName": "Hyunbok",
"id": "sg:person.01043071367.33",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01043071367.33"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1038/nmat2119",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1051342000",
"https://doi.org/10.1038/nmat2119"
],
"type": "CreativeWork"
}
],
"datePublished": "2021-11-09",
"datePublishedReg": "2021-11-09",
"description": "A high device performance of organic light-emitting diodes (OLEDs) can be achieved by minimizing the hole injection barrier (HIB) at the anode interface. However, the work function of indium tin oxide (ITO) is not sufficiently high; thus, the use of an appropriate hole injection layer (HIL) is necessary. In this study, we demonstrated that bis(trifluoromethane)sulfonimide lithium salt (Li-TFSI) is an efficient HIL to decrease the HIB in OLEDs. The device performances of hole-only devices (HODs) and OLEDs were significantly enhanced by the insertion of the ultrathin Li-TFSI HIL between the N,N\u2032-di(1-naphthyl)-N,N\u2032-diphenyl-(1,1\u2032-biphenyl)-4,4\u2032-diamine (NPB) hole transport layer and ITO. In situ ultraviolet photoelectron spectroscopy measurements revealed that the work function of ITO was considerably increased by the deposition of the Li-TFSI HIL. Accordingly, the HIB from ITO to NPB was remarkably reduced. This is the origin of the hole injection improvements in the HODs and OLEDs with the Li-TFSI HIL. Thus, Li-TFSI would be an efficient interface modifier to increase the work function of the electrode and decrease the HIB in various electronic devices.",
"genre": "article",
"id": "sg:pub.10.1007/s40042-021-00324-7",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1042000",
"issn": [
"0374-4884",
"1976-8524"
],
"name": "Journal of the Korean Physical Society",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "10",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "79"
}
],
"keywords": [
"hole injection layer",
"indium tin oxide",
"organic light-emitting diodes",
"hole injection barrier",
"hole injection improvements",
"light-emitting diodes",
"device performance",
"efficient hole injection layer",
"work function",
"situ ultraviolet photoelectron spectroscopy measurements",
"hole transport layer",
"high device performance",
"diamine (NPB) hole transport layer",
"ultraviolet photoelectron spectroscopy measurements",
"injection layer",
"tin oxide",
"anode interface",
"photoelectron spectroscopy measurements",
"interface modifier",
"transport layer",
"injection barrier",
"Li-TFSI",
"electronic devices",
"spectroscopy measurements",
"diodes",
"layer",
"N\u2032-diphenyl",
"devices",
"performance",
"lithium salts",
"NPB",
"electrode",
"interface",
"oxide",
"deposition",
"measurements",
"improvement",
"holes",
"ns",
"modifiers",
"salt",
"function",
"use",
"barriers",
"study",
"insertion",
"HOD",
"origin"
],
"name": "Hole injection improvement using ultrathin Li-TFSI layer in organic light-emitting diodes",
"pagination": "961-965",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1142471563"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s40042-021-00324-7"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s40042-021-00324-7",
"https://app.dimensions.ai/details/publication/pub.1142471563"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-10T10:31",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/article/article_879.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/s40042-021-00324-7"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s40042-021-00324-7'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s40042-021-00324-7'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s40042-021-00324-7'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s40042-021-00324-7'
This table displays all metadata directly associated to this object as RDF triples.
127 TRIPLES
22 PREDICATES
74 URIs
65 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/s40042-021-00324-7 | schema:about | anzsrc-for:01 |
2 | ″ | ″ | anzsrc-for:02 |
3 | ″ | schema:author | Na760464375184b59b41f4c67b942f803 |
4 | ″ | schema:citation | sg:pub.10.1038/nmat2119 |
5 | ″ | schema:datePublished | 2021-11-09 |
6 | ″ | schema:datePublishedReg | 2021-11-09 |
7 | ″ | schema:description | A high device performance of organic light-emitting diodes (OLEDs) can be achieved by minimizing the hole injection barrier (HIB) at the anode interface. However, the work function of indium tin oxide (ITO) is not sufficiently high; thus, the use of an appropriate hole injection layer (HIL) is necessary. In this study, we demonstrated that bis(trifluoromethane)sulfonimide lithium salt (Li-TFSI) is an efficient HIL to decrease the HIB in OLEDs. The device performances of hole-only devices (HODs) and OLEDs were significantly enhanced by the insertion of the ultrathin Li-TFSI HIL between the N,N′-di(1-naphthyl)-N,N′-diphenyl-(1,1′-biphenyl)-4,4′-diamine (NPB) hole transport layer and ITO. In situ ultraviolet photoelectron spectroscopy measurements revealed that the work function of ITO was considerably increased by the deposition of the Li-TFSI HIL. Accordingly, the HIB from ITO to NPB was remarkably reduced. This is the origin of the hole injection improvements in the HODs and OLEDs with the Li-TFSI HIL. Thus, Li-TFSI would be an efficient interface modifier to increase the work function of the electrode and decrease the HIB in various electronic devices. |
8 | ″ | schema:genre | article |
9 | ″ | schema:inLanguage | en |
10 | ″ | schema:isAccessibleForFree | false |
11 | ″ | schema:isPartOf | N24ee000893d34758948a9d4ac501bea8 |
12 | ″ | ″ | N7ca93d0b98ea436cb5598a34054c5524 |
13 | ″ | ″ | sg:journal.1042000 |
14 | ″ | schema:keywords | HOD |
15 | ″ | ″ | Li-TFSI |
16 | ″ | ″ | NPB |
17 | ″ | ″ | N′-diphenyl |
18 | ″ | ″ | anode interface |
19 | ″ | ″ | barriers |
20 | ″ | ″ | deposition |
21 | ″ | ″ | device performance |
22 | ″ | ″ | devices |
23 | ″ | ″ | diamine (NPB) hole transport layer |
24 | ″ | ″ | diodes |
25 | ″ | ″ | efficient hole injection layer |
26 | ″ | ″ | electrode |
27 | ″ | ″ | electronic devices |
28 | ″ | ″ | function |
29 | ″ | ″ | high device performance |
30 | ″ | ″ | hole injection barrier |
31 | ″ | ″ | hole injection improvements |
32 | ″ | ″ | hole injection layer |
33 | ″ | ″ | hole transport layer |
34 | ″ | ″ | holes |
35 | ″ | ″ | improvement |
36 | ″ | ″ | indium tin oxide |
37 | ″ | ″ | injection barrier |
38 | ″ | ″ | injection layer |
39 | ″ | ″ | insertion |
40 | ″ | ″ | interface |
41 | ″ | ″ | interface modifier |
42 | ″ | ″ | layer |
43 | ″ | ″ | light-emitting diodes |
44 | ″ | ″ | lithium salts |
45 | ″ | ″ | measurements |
46 | ″ | ″ | modifiers |
47 | ″ | ″ | ns |
48 | ″ | ″ | organic light-emitting diodes |
49 | ″ | ″ | origin |
50 | ″ | ″ | oxide |
51 | ″ | ″ | performance |
52 | ″ | ″ | photoelectron spectroscopy measurements |
53 | ″ | ″ | salt |
54 | ″ | ″ | situ ultraviolet photoelectron spectroscopy measurements |
55 | ″ | ″ | spectroscopy measurements |
56 | ″ | ″ | study |
57 | ″ | ″ | tin oxide |
58 | ″ | ″ | transport layer |
59 | ″ | ″ | ultraviolet photoelectron spectroscopy measurements |
60 | ″ | ″ | use |
61 | ″ | ″ | work function |
62 | ″ | schema:name | Hole injection improvement using ultrathin Li-TFSI layer in organic light-emitting diodes |
63 | ″ | schema:pagination | 961-965 |
64 | ″ | schema:productId | N2be633bea54b47a2ab62d391fcf3ac4b |
65 | ″ | ″ | N869975a263084d0c8dd70b26202c7ba3 |
66 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1142471563 |
67 | ″ | ″ | https://doi.org/10.1007/s40042-021-00324-7 |
68 | ″ | schema:sdDatePublished | 2022-05-10T10:31 |
69 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
70 | ″ | schema:sdPublisher | N7eb2cab112b4430ebd7026c4da459bf1 |
71 | ″ | schema:url | https://doi.org/10.1007/s40042-021-00324-7 |
72 | ″ | sgo:license | sg:explorer/license/ |
73 | ″ | sgo:sdDataset | articles |
74 | ″ | rdf:type | schema:ScholarlyArticle |
75 | N24ee000893d34758948a9d4ac501bea8 | schema:volumeNumber | 79 |
76 | ″ | rdf:type | schema:PublicationVolume |
77 | N2be633bea54b47a2ab62d391fcf3ac4b | schema:name | doi |
78 | ″ | schema:value | 10.1007/s40042-021-00324-7 |
79 | ″ | rdf:type | schema:PropertyValue |
80 | N3b970c5738ba4caea953deea9f3b7603 | rdf:first | sg:person.01043071367.33 |
81 | ″ | rdf:rest | rdf:nil |
82 | N7ca93d0b98ea436cb5598a34054c5524 | schema:issueNumber | 10 |
83 | ″ | rdf:type | schema:PublicationIssue |
84 | N7eb2cab112b4430ebd7026c4da459bf1 | schema:name | Springer Nature - SN SciGraph project |
85 | ″ | rdf:type | schema:Organization |
86 | N869975a263084d0c8dd70b26202c7ba3 | schema:name | dimensions_id |
87 | ″ | schema:value | pub.1142471563 |
88 | ″ | rdf:type | schema:PropertyValue |
89 | Na760464375184b59b41f4c67b942f803 | rdf:first | sg:person.01110101660.49 |
90 | ″ | rdf:rest | Na929d0f77e8c4758af5baf2216a8cac1 |
91 | Na929d0f77e8c4758af5baf2216a8cac1 | rdf:first | sg:person.01275230676.33 |
92 | ″ | rdf:rest | N3b970c5738ba4caea953deea9f3b7603 |
93 | anzsrc-for:01 | schema:inDefinedTermSet | anzsrc-for: |
94 | ″ | schema:name | Mathematical Sciences |
95 | ″ | rdf:type | schema:DefinedTerm |
96 | anzsrc-for:02 | schema:inDefinedTermSet | anzsrc-for: |
97 | ″ | schema:name | Physical Sciences |
98 | ″ | rdf:type | schema:DefinedTerm |
99 | sg:journal.1042000 | schema:issn | 0374-4884 |
100 | ″ | ″ | 1976-8524 |
101 | ″ | schema:name | Journal of the Korean Physical Society |
102 | ″ | schema:publisher | Springer Nature |
103 | ″ | rdf:type | schema:Periodical |
104 | sg:person.01043071367.33 | schema:affiliation | grid-institutes:grid.412010.6 |
105 | ″ | schema:familyName | Lee |
106 | ″ | schema:givenName | Hyunbok |
107 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01043071367.33 |
108 | ″ | rdf:type | schema:Person |
109 | sg:person.01110101660.49 | schema:affiliation | grid-institutes:grid.15444.30 |
110 | ″ | schema:familyName | Kim |
111 | ″ | schema:givenName | Kiwoong |
112 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01110101660.49 |
113 | ″ | rdf:type | schema:Person |
114 | sg:person.01275230676.33 | schema:affiliation | grid-institutes:grid.15444.30 |
115 | ″ | schema:familyName | Yi |
116 | ″ | schema:givenName | Yeonjin |
117 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01275230676.33 |
118 | ″ | rdf:type | schema:Person |
119 | sg:pub.10.1038/nmat2119 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1051342000 |
120 | ″ | ″ | https://doi.org/10.1038/nmat2119 |
121 | ″ | rdf:type | schema:CreativeWork |
122 | grid-institutes:grid.15444.30 | schema:alternateName | Department of Physics and van der Waals Materials Research Center, Yonsei University, 03722, Seoul, Republic of Korea |
123 | ″ | schema:name | Department of Physics and van der Waals Materials Research Center, Yonsei University, 03722, Seoul, Republic of Korea |
124 | ″ | rdf:type | schema:Organization |
125 | grid-institutes:grid.412010.6 | schema:alternateName | Department of Physics and Institute for Accelerator Science, Kangwon National University, 24341, Chuncheon, Republic of Korea |
126 | ″ | schema:name | Department of Physics and Institute for Accelerator Science, Kangwon National University, 24341, Chuncheon, Republic of Korea |
127 | ″ | rdf:type | schema:Organization |