First-order formalism of holographic Wilsonian renormalization group: Langevin equation View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2021-11-03

AUTHORS

Jae-Hyuk Oh

ABSTRACT

We study a mathematical relationship between holographic Wilsonian renormalization group and stochastic quantization framework. We extend the original proposal given in arXiv:1209.2242 to interacting theories. The original proposal suggests that fictitious time (or stochastic time) evolution of stochastic 2-point correlation function will be identical to the radial evolution of the double-trace operator of certain classes of holographic models, which are free theories in AdS space. We study holographic gravity models with interactions in AdS space, and establish a map between the holographic renormalization flow of multi-trace operators and stochastic n-point functions. To give precise examples, we extensively study conformally coupled scalar theory in AdS6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {AdS}_6$$\end{document}. What we have found is that the stochastic time t dependent 3-point function obtained from Langevin equation with its Euclidean action being given by SE=2Ios\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_E=2I_{os}$$\end{document} is identical to holographic renormalization group evolution of holographic triple-trace operator as its energy scale r changes once an identification of t=r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t=r$$\end{document} is made. Ios\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I_{os}$$\end{document} is the on-shell action of holographic model of conformally coupled scalar theory at the AdS boundary. We argue that this can be fully extended to mathematical relationship between multi-point functions and multi-trace operators in each framework. More... »

PAGES

903-917

References to SciGraph publications

  • 2020-11-19. 4-point function from conformally coupled scalar in AdS6 in JOURNAL OF HIGH ENERGY PHYSICS
  • 2012-11-26. Stochastic quantization and holographic Wilsonian renormalization group in JOURNAL OF HIGH ENERGY PHYSICS
  • 2013-10-25. Stochastic quantization of conformally coupled scalar in AdS in JOURNAL OF HIGH ENERGY PHYSICS
  • 2011-08-16. Integrating out geometry: holographic Wilsonian RG and the membrane paradigm in JOURNAL OF HIGH ENERGY PHYSICS
  • 2000-08-01. On the holographic renormalization group in JOURNAL OF HIGH ENERGY PHYSICS
  • 2015-05-06. The holographic dictionary for Beta functions of multi-trace coupling constants in JOURNAL OF HIGH ENERGY PHYSICS
  • 2011-06-09. Holographic and Wilsonian renormalization groups in JOURNAL OF HIGH ENERGY PHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s40042-021-00320-x

    DOI

    http://dx.doi.org/10.1007/s40042-021-00320-x

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1142373074


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Applied Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Physics, Hanyang University, 04763, Seoul, South Korea", 
              "id": "http://www.grid.ac/institutes/grid.49606.3d", 
              "name": [
                "Department of Physics, Hanyang University, 04763, Seoul, South Korea"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Oh", 
            "givenName": "Jae-Hyuk", 
            "id": "sg:person.013652002543.83", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013652002543.83"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/jhep11(2012)144", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052895242", 
              "https://doi.org/10.1007/jhep11(2012)144"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep11(2020)100", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1132775071", 
              "https://doi.org/10.1007/jhep11(2020)100"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep10(2013)170", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052584045", 
              "https://doi.org/10.1007/jhep10(2013)170"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep06(2011)031", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044915410", 
              "https://doi.org/10.1007/jhep06(2011)031"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep08(2011)051", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036987791", 
              "https://doi.org/10.1007/jhep08(2011)051"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep05(2015)031", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038603210", 
              "https://doi.org/10.1007/jhep05(2015)031"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2000/08/003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004643691", 
              "https://doi.org/10.1088/1126-6708/2000/08/003"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2021-11-03", 
        "datePublishedReg": "2021-11-03", 
        "description": "We study a mathematical relationship between holographic Wilsonian renormalization group and stochastic quantization framework. We extend the original proposal given in arXiv:1209.2242 to interacting theories. The original proposal suggests that fictitious time (or stochastic time) evolution of stochastic 2-point correlation function will be identical to the radial evolution of the double-trace operator of certain classes of holographic models, which are free theories in AdS space. We study holographic gravity models with interactions in AdS space, and establish a map between the holographic renormalization flow of multi-trace operators and stochastic n-point functions. To give precise examples, we extensively study conformally coupled scalar theory in AdS6\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\hbox {AdS}_6$$\\end{document}. What we have found is that the stochastic time t dependent 3-point function obtained from Langevin equation with its Euclidean action being given by SE=2Ios\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$S_E=2I_{os}$$\\end{document} is identical to holographic renormalization group evolution of holographic triple-trace operator as its energy scale r changes once an identification of t=r\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$t=r$$\\end{document} is made. Ios\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$I_{os}$$\\end{document} is the on-shell action of holographic model of conformally coupled scalar theory at the AdS boundary. We argue that this can be fully extended to mathematical relationship between multi-point functions and multi-trace operators in each framework.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s40042-021-00320-x", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1042000", 
            "issn": [
              "0374-4884", 
              "1976-8524"
            ], 
            "name": "Journal of the Korean Physical Society", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "10", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "79"
          }
        ], 
        "keywords": [
          "Wilsonian renormalization group", 
          "holographic Wilsonian renormalization group", 
          "multi-trace operators", 
          "Langevin equation", 
          "renormalization group", 
          "scalar theory", 
          "AdS space", 
          "mathematical relationship", 
          "holographic model", 
          "first-order formalism", 
          "double-trace operators", 
          "renormalization flow", 
          "renormalization group evolution", 
          "free theory", 
          "Euclidean action", 
          "AdS boundary", 
          "point functions", 
          "certain class", 
          "correlation functions", 
          "radial evolution", 
          "shell action", 
          "time evolution", 
          "time t", 
          "quantization framework", 
          "original proposal", 
          "operators", 
          "equations", 
          "group evolution", 
          "multi-point functions", 
          "gravity model", 
          "theory", 
          "space", 
          "formalism", 
          "model", 
          "precise examples", 
          "function", 
          "framework", 
          "evolution", 
          "class", 
          "flow", 
          "boundaries", 
          "proposal", 
          "maps", 
          "interaction", 
          "identification", 
          "action", 
          "relationship", 
          "group", 
          "changes", 
          "example", 
          "stochastic quantization framework", 
          "fictitious time (or stochastic time) evolution", 
          "holographic gravity models", 
          "holographic renormalization flow", 
          "stochastic time t", 
          "holographic renormalization group evolution", 
          "holographic triple-trace operator", 
          "triple-trace operator", 
          "energy scale r changes", 
          "scale r changes", 
          "r changes"
        ], 
        "name": "First-order formalism of holographic Wilsonian renormalization group: Langevin equation", 
        "pagination": "903-917", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1142373074"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s40042-021-00320-x"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s40042-021-00320-x", 
          "https://app.dimensions.ai/details/publication/pub.1142373074"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-01-01T19:03", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_913.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s40042-021-00320-x"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s40042-021-00320-x'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s40042-021-00320-x'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s40042-021-00320-x'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s40042-021-00320-x'


     

    This table displays all metadata directly associated to this object as RDF triples.

    147 TRIPLES      22 PREDICATES      93 URIs      78 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s40042-021-00320-x schema:about anzsrc-for:01
    2 anzsrc-for:0102
    3 schema:author N978cd50e6e9f42eb80bf8c4e0ebaeec6
    4 schema:citation sg:pub.10.1007/jhep05(2015)031
    5 sg:pub.10.1007/jhep06(2011)031
    6 sg:pub.10.1007/jhep08(2011)051
    7 sg:pub.10.1007/jhep10(2013)170
    8 sg:pub.10.1007/jhep11(2012)144
    9 sg:pub.10.1007/jhep11(2020)100
    10 sg:pub.10.1088/1126-6708/2000/08/003
    11 schema:datePublished 2021-11-03
    12 schema:datePublishedReg 2021-11-03
    13 schema:description We study a mathematical relationship between holographic Wilsonian renormalization group and stochastic quantization framework. We extend the original proposal given in arXiv:1209.2242 to interacting theories. The original proposal suggests that fictitious time (or stochastic time) evolution of stochastic 2-point correlation function will be identical to the radial evolution of the double-trace operator of certain classes of holographic models, which are free theories in AdS space. We study holographic gravity models with interactions in AdS space, and establish a map between the holographic renormalization flow of multi-trace operators and stochastic n-point functions. To give precise examples, we extensively study conformally coupled scalar theory in AdS6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {AdS}_6$$\end{document}. What we have found is that the stochastic time t dependent 3-point function obtained from Langevin equation with its Euclidean action being given by SE=2Ios\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_E=2I_{os}$$\end{document} is identical to holographic renormalization group evolution of holographic triple-trace operator as its energy scale r changes once an identification of t=r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t=r$$\end{document} is made. Ios\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I_{os}$$\end{document} is the on-shell action of holographic model of conformally coupled scalar theory at the AdS boundary. We argue that this can be fully extended to mathematical relationship between multi-point functions and multi-trace operators in each framework.
    14 schema:genre article
    15 schema:inLanguage en
    16 schema:isAccessibleForFree true
    17 schema:isPartOf N4b40c56450b24b85ab35068d266f297f
    18 N88c38f2a18014cec9eb9a144ee608281
    19 sg:journal.1042000
    20 schema:keywords AdS boundary
    21 AdS space
    22 Euclidean action
    23 Langevin equation
    24 Wilsonian renormalization group
    25 action
    26 boundaries
    27 certain class
    28 changes
    29 class
    30 correlation functions
    31 double-trace operators
    32 energy scale r changes
    33 equations
    34 evolution
    35 example
    36 fictitious time (or stochastic time) evolution
    37 first-order formalism
    38 flow
    39 formalism
    40 framework
    41 free theory
    42 function
    43 gravity model
    44 group
    45 group evolution
    46 holographic Wilsonian renormalization group
    47 holographic gravity models
    48 holographic model
    49 holographic renormalization flow
    50 holographic renormalization group evolution
    51 holographic triple-trace operator
    52 identification
    53 interaction
    54 maps
    55 mathematical relationship
    56 model
    57 multi-point functions
    58 multi-trace operators
    59 operators
    60 original proposal
    61 point functions
    62 precise examples
    63 proposal
    64 quantization framework
    65 r changes
    66 radial evolution
    67 relationship
    68 renormalization flow
    69 renormalization group
    70 renormalization group evolution
    71 scalar theory
    72 scale r changes
    73 shell action
    74 space
    75 stochastic quantization framework
    76 stochastic time t
    77 theory
    78 time evolution
    79 time t
    80 triple-trace operator
    81 schema:name First-order formalism of holographic Wilsonian renormalization group: Langevin equation
    82 schema:pagination 903-917
    83 schema:productId Nc2e39bde5ec64cdf988120f4eb5dd110
    84 Ne5c6d82ce169452f9b27e9c5f9d8d0a6
    85 schema:sameAs https://app.dimensions.ai/details/publication/pub.1142373074
    86 https://doi.org/10.1007/s40042-021-00320-x
    87 schema:sdDatePublished 2022-01-01T19:03
    88 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    89 schema:sdPublisher N8ebcbe83ac9d4a249d57cf013fd35ba5
    90 schema:url https://doi.org/10.1007/s40042-021-00320-x
    91 sgo:license sg:explorer/license/
    92 sgo:sdDataset articles
    93 rdf:type schema:ScholarlyArticle
    94 N4b40c56450b24b85ab35068d266f297f schema:issueNumber 10
    95 rdf:type schema:PublicationIssue
    96 N88c38f2a18014cec9eb9a144ee608281 schema:volumeNumber 79
    97 rdf:type schema:PublicationVolume
    98 N8ebcbe83ac9d4a249d57cf013fd35ba5 schema:name Springer Nature - SN SciGraph project
    99 rdf:type schema:Organization
    100 N978cd50e6e9f42eb80bf8c4e0ebaeec6 rdf:first sg:person.013652002543.83
    101 rdf:rest rdf:nil
    102 Nc2e39bde5ec64cdf988120f4eb5dd110 schema:name doi
    103 schema:value 10.1007/s40042-021-00320-x
    104 rdf:type schema:PropertyValue
    105 Ne5c6d82ce169452f9b27e9c5f9d8d0a6 schema:name dimensions_id
    106 schema:value pub.1142373074
    107 rdf:type schema:PropertyValue
    108 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    109 schema:name Mathematical Sciences
    110 rdf:type schema:DefinedTerm
    111 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
    112 schema:name Applied Mathematics
    113 rdf:type schema:DefinedTerm
    114 sg:journal.1042000 schema:issn 0374-4884
    115 1976-8524
    116 schema:name Journal of the Korean Physical Society
    117 schema:publisher Springer Nature
    118 rdf:type schema:Periodical
    119 sg:person.013652002543.83 schema:affiliation grid-institutes:grid.49606.3d
    120 schema:familyName Oh
    121 schema:givenName Jae-Hyuk
    122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013652002543.83
    123 rdf:type schema:Person
    124 sg:pub.10.1007/jhep05(2015)031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038603210
    125 https://doi.org/10.1007/jhep05(2015)031
    126 rdf:type schema:CreativeWork
    127 sg:pub.10.1007/jhep06(2011)031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044915410
    128 https://doi.org/10.1007/jhep06(2011)031
    129 rdf:type schema:CreativeWork
    130 sg:pub.10.1007/jhep08(2011)051 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036987791
    131 https://doi.org/10.1007/jhep08(2011)051
    132 rdf:type schema:CreativeWork
    133 sg:pub.10.1007/jhep10(2013)170 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052584045
    134 https://doi.org/10.1007/jhep10(2013)170
    135 rdf:type schema:CreativeWork
    136 sg:pub.10.1007/jhep11(2012)144 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052895242
    137 https://doi.org/10.1007/jhep11(2012)144
    138 rdf:type schema:CreativeWork
    139 sg:pub.10.1007/jhep11(2020)100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1132775071
    140 https://doi.org/10.1007/jhep11(2020)100
    141 rdf:type schema:CreativeWork
    142 sg:pub.10.1088/1126-6708/2000/08/003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004643691
    143 https://doi.org/10.1088/1126-6708/2000/08/003
    144 rdf:type schema:CreativeWork
    145 grid-institutes:grid.49606.3d schema:alternateName Department of Physics, Hanyang University, 04763, Seoul, South Korea
    146 schema:name Department of Physics, Hanyang University, 04763, Seoul, South Korea
    147 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...