# Study of the frustrated Ising model on a square lattice based on the exact density of states

Ontology type: schema:ScholarlyArticle

### Article Info

DATE

2021-11-09

AUTHORS ABSTRACT

The square-lattice Ising model with nearest-neighbor (J1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J_1$$\end{document}) and next-nearest-neighbor (J2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J_2$$\end{document}) interactions is exactly unsolvable. The square-lattice J1-J2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J_1-J_2$$\end{document} Ising model is frustrated for J2<0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J_2<0$$\end{document}. For R=J2/J1=±1/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R=J_2/J_1=\pm 1/2$$\end{document}, the square-lattice J1-J2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J_1-J_2$$\end{document} Ising model for J2<0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J_2<0$$\end{document} is the most frustrated, and its ground states are infinitely degenerate. The exact integer values for the density of states of the J1-J2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J_1-J_2$$\end{document} Ising model for R=±1/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R=\pm 1/2$$\end{document} are evaluated on L×2L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L\times 2L$$\end{document} square lattices with free boundary conditions in the L-direction and periodic boundary conditions in the 2L-direction up to L=12\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L=12$$\end{document} using an exact enumeration method. The total number of states is 2288≈5×1086\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^{288}\approx 5\times 10^{86}$$\end{document} for L=12\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L=12$$\end{document}, and counting all 2288\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^{288}$$\end{document} states requires enormous computational work. The thermal scaling exponent yt=1(=1/ν)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$y_t=1(=1/\nu )$$\end{document} (where ν\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nu$$\end{document} is the correlation-length critical exponent) of the square-lattice J1-J2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J_1-J_2$$\end{document} Ising model is obtained for J2>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J_2>0$$\end{document} and R=±1/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R=\pm 1/2$$\end{document}, in agreement with the Ising universality class. The shift exponent λ=1.00\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda =1.00$$\end{document} is obtained for J2>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J_2>0$$\end{document} and R=±1/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R=\pm 1/2$$\end{document}, equaling the thermal scaling exponent yt\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$y_t$$\end{document}. On the other hand, the thermal scaling exponent yt=2.0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$y_t=2.0$$\end{document} of the square-lattice J1-J2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J_1-J_2$$\end{document} Ising model is obtained for J2<0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J_2<0$$\end{document} and R=±1/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R=\pm 1/2$$\end{document}, suggesting a first-order phase transition. The shift exponent λ=1.1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda =1.1$$\end{document} is obtained for J2<0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J_2<0$$\end{document} and R=±1/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R=\pm 1/2$$\end{document} and is different from the thermal scaling exponent yt\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$y_t$$\end{document}. More... »

PAGES

894-902

### Journal

TITLE

Journal of the Korean Physical Society

ISSUE

10

VOLUME

79

### Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s40042-021-00296-8

DOI

http://dx.doi.org/10.1007/s40042-021-00296-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1142493042

Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service:

[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Physical Sciences",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "School of Liberal Arts and Sciences, Korea National University of Transportation, 27469, Chungju, Korea",
"id": "http://www.grid.ac/institutes/grid.411661.5",
"name": [
"School of Liberal Arts and Sciences, Korea National University of Transportation, 27469, Chungju, Korea"
],
"type": "Organization"
},
"familyName": "Kim",
"givenName": "Seung-Yeon",
"id": "sg:person.01264022063.12",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01264022063.12"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.3938/jkps.72.653",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1101699158",
"https://doi.org/10.3938/jkps.72.653"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1140/epjb/e2008-00359-6",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1048084860",
"https://doi.org/10.1140/epjb/e2008-00359-6"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf01386092",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1012489555",
"https://doi.org/10.1007/bf01386092"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.3938/jkps.77.630",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1132139385",
"https://doi.org/10.3938/jkps.77.630"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.3938/jkps.72.646",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1101695611",
"https://doi.org/10.3938/jkps.72.646"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.3938/jkps.67.1517",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1050673161",
"https://doi.org/10.3938/jkps.67.1517"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1023/a:1004836227767",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1046358983",
"https://doi.org/10.1023/a:1004836227767"
],
"type": "CreativeWork"
}
],
"datePublished": "2021-11-09",
"datePublishedReg": "2021-11-09",
"description": "The square-lattice Ising model with nearest-neighbor (J1\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$J_1$$\\end{document}) and next-nearest-neighbor (J2\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$J_2$$\\end{document}) interactions is exactly unsolvable. The square-lattice J1-J2\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$J_1-J_2$$\\end{document} Ising model is frustrated for J2<0\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$J_2<0$$\\end{document}. For R=J2/J1=\u00b11/2\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$R=J_2/J_1=\\pm 1/2$$\\end{document}, the square-lattice J1-J2\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$J_1-J_2$$\\end{document} Ising model for J2<0\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$J_2<0$$\\end{document} is the most frustrated, and its ground states are infinitely degenerate. The exact integer values for the density of states of the J1-J2\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$J_1-J_2$$\\end{document} Ising model for R=\u00b11/2\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$R=\\pm 1/2$$\\end{document} are evaluated on L\u00d72L\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$L\\times 2L$$\\end{document} square lattices with free boundary conditions in the L-direction and periodic boundary conditions in the 2L-direction up to L=12\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$L=12$$\\end{document} using an exact enumeration method. The total number of states is 2288\u22485\u00d71086\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$2^{288}\\approx 5\\times 10^{86}$$\\end{document} for L=12\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$L=12$$\\end{document}, and counting all 2288\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$2^{288}$$\\end{document} states requires enormous computational work. The thermal scaling exponent yt=1(=1/\u03bd)\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$y_t=1(=1/\\nu )$$\\end{document} (where \u03bd\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\nu$$\\end{document} is the correlation-length critical exponent) of the square-lattice J1-J2\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$J_1-J_2$$\\end{document} Ising model is obtained for J2>0\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$J_2>0$$\\end{document} and R=\u00b11/2\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$R=\\pm 1/2$$\\end{document}, in agreement with the Ising universality class. The shift exponent \u03bb=1.00\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\lambda =1.00$$\\end{document} is obtained for J2>0\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$J_2>0$$\\end{document} and R=\u00b11/2\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$R=\\pm 1/2$$\\end{document}, equaling the thermal scaling exponent yt\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$y_t$$\\end{document}. On the other hand, the thermal scaling exponent yt=2.0\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$y_t=2.0$$\\end{document} of the square-lattice J1-J2\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$J_1-J_2$$\\end{document} Ising model is obtained for J2<0\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$J_2<0$$\\end{document} and R=\u00b11/2\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$R=\\pm 1/2$$\\end{document}, suggesting a first-order phase transition. The shift exponent \u03bb=1.1\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\lambda =1.1$$\\end{document} is obtained for J2<0\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$J_2<0$$\\end{document} and R=\u00b11/2\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$R=\\pm 1/2$$\\end{document} and is different from the thermal scaling exponent yt\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$y_t$$\\end{document}.",
"genre": "article",
"id": "sg:pub.10.1007/s40042-021-00296-8",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1042000",
"issn": [
"0374-4884",
"1976-8524"
],
"name": "Journal of the Korean Physical Society",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "10",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
}
],
"keywords": [
"work",
"state",
"class",
"hand",
"Ising model",
"model",
"interaction",
"values",
"direction",
"computational work",
"study",
"square lattice Ising model",
"J2/",
"ground state",
"exact integer values",
"integer values",
"density of states",
"square lattice",
"free boundary conditions",
"boundary conditions",
"periodic boundary conditions",
"exact enumeration method",
"method",
"total number",
"number",
"scaling exponents",
"exponent",
"Ising universality class",
"universality class",
"shift exponent",
"first-order phase transition",
"phase transition",
"transition",
"frustrated Ising model",
"exact density",
"J1",
"density",
"lattice",
"conditions",
"enumeration method",
"agreement",
"square-lattice J1",
"enormous computational work",
"thermal scaling exponent"
],
"name": "Study of the frustrated Ising model on a square lattice based on the exact density of states",
"pagination": "894-902",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1142493042"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s40042-021-00296-8"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s40042-021-00296-8",
"https://app.dimensions.ai/details/publication/pub.1142493042"
],
"sdDataset": "articles",
"sdDatePublished": "2022-01-01T19:02",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_889.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/s40042-021-00296-8"
}
]

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s40042-021-00296-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s40042-021-00296-8'

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s40042-021-00296-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s40042-021-00296-8'

This table displays all metadata directly associated to this object as RDF triples.

130 TRIPLES      22 PREDICATES      76 URIs      61 LITERALS      6 BLANK NODES

Subject Predicate Object
2 anzsrc-for:02
4 schema:citation sg:pub.10.1007/bf01386092
5 sg:pub.10.1023/a:1004836227767
6 sg:pub.10.1140/epjb/e2008-00359-6
7 sg:pub.10.3938/jkps.67.1517
8 sg:pub.10.3938/jkps.72.646
9 sg:pub.10.3938/jkps.72.653
10 sg:pub.10.3938/jkps.77.630
11 schema:datePublished 2021-11-09
12 schema:datePublishedReg 2021-11-09
13 schema:description The square-lattice Ising model with nearest-neighbor (J1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J_1$$\end{document}) and next-nearest-neighbor (J2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J_2$$\end{document}) interactions is exactly unsolvable. The square-lattice J1-J2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J_1-J_2$$\end{document} Ising model is frustrated for J2<0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J_2<0$$\end{document}. For R=J2/J1=±1/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R=J_2/J_1=\pm 1/2$$\end{document}, the square-lattice J1-J2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J_1-J_2$$\end{document} Ising model for J2<0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J_2<0$$\end{document} is the most frustrated, and its ground states are infinitely degenerate. The exact integer values for the density of states of the J1-J2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J_1-J_2$$\end{document} Ising model for R=±1/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R=\pm 1/2$$\end{document} are evaluated on L×2L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L\times 2L$$\end{document} square lattices with free boundary conditions in the L-direction and periodic boundary conditions in the 2L-direction up to L=12\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L=12$$\end{document} using an exact enumeration method. The total number of states is 2288≈5×1086\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^{288}\approx 5\times 10^{86}$$\end{document} for L=12\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L=12$$\end{document}, and counting all 2288\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^{288}$$\end{document} states requires enormous computational work. The thermal scaling exponent yt=1(=1/ν)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$y_t=1(=1/\nu )$$\end{document} (where ν\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nu$$\end{document} is the correlation-length critical exponent) of the square-lattice J1-J2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J_1-J_2$$\end{document} Ising model is obtained for J2>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J_2>0$$\end{document} and R=±1/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R=\pm 1/2$$\end{document}, in agreement with the Ising universality class. The shift exponent λ=1.00\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda =1.00$$\end{document} is obtained for J2>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J_2>0$$\end{document} and R=±1/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R=\pm 1/2$$\end{document}, equaling the thermal scaling exponent yt\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$y_t$$\end{document}. On the other hand, the thermal scaling exponent yt=2.0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$y_t=2.0$$\end{document} of the square-lattice J1-J2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J_1-J_2$$\end{document} Ising model is obtained for J2<0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J_2<0$$\end{document} and R=±1/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R=\pm 1/2$$\end{document}, suggesting a first-order phase transition. The shift exponent λ=1.1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda =1.1$$\end{document} is obtained for J2<0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J_2<0$$\end{document} and R=±1/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R=\pm 1/2$$\end{document} and is different from the thermal scaling exponent yt\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$y_t$$\end{document}.
14 schema:genre article
15 schema:inLanguage en
16 schema:isAccessibleForFree false
17 schema:isPartOf Nc97ebfbc22944ef09338ae84b860666d
18 Nd941bbbd7bec490eb3037714a00ba65e
19 sg:journal.1042000
20 schema:keywords Ising model
21 Ising universality class
22 J1
23 J2/
24 agreement
25 boundary conditions
26 class
27 computational work
28 conditions
29 density
30 density of states
31 direction
32 enormous computational work
33 enumeration method
34 exact density
35 exact enumeration method
36 exact integer values
37 exponent
38 first-order phase transition
39 free boundary conditions
40 frustrated Ising model
41 ground state
42 hand
43 integer values
44 interaction
45 lattice
46 method
47 model
48 number
49 periodic boundary conditions
50 phase transition
51 scaling exponents
52 shift exponent
53 square lattice
54 square lattice Ising model
55 square-lattice J1
56 state
57 study
58 thermal scaling exponent
59 total number
60 transition
61 universality class
62 values
63 work
64 schema:name Study of the frustrated Ising model on a square lattice based on the exact density of states
65 schema:pagination 894-902
66 schema:productId N5980e3c19ddd4e33bef1c53731dfcb76
67 N776b745fd31e46e4bea5773f4288844a
68 schema:sameAs https://app.dimensions.ai/details/publication/pub.1142493042
69 https://doi.org/10.1007/s40042-021-00296-8
70 schema:sdDatePublished 2022-01-01T19:02
73 schema:url https://doi.org/10.1007/s40042-021-00296-8
75 sgo:sdDataset articles
76 rdf:type schema:ScholarlyArticle
77 N5980e3c19ddd4e33bef1c53731dfcb76 schema:name dimensions_id
78 schema:value pub.1142493042
79 rdf:type schema:PropertyValue
80 N776b745fd31e46e4bea5773f4288844a schema:name doi
81 schema:value 10.1007/s40042-021-00296-8
82 rdf:type schema:PropertyValue
84 rdf:rest rdf:nil
86 rdf:type schema:PublicationVolume
87 Nd941bbbd7bec490eb3037714a00ba65e schema:issueNumber 10
88 rdf:type schema:PublicationIssue
89 Nfe185a0a15eb49d8ad3afeba31e59b30 schema:name Springer Nature - SN SciGraph project
90 rdf:type schema:Organization
91 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
92 schema:name Mathematical Sciences
93 rdf:type schema:DefinedTerm
94 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
95 schema:name Physical Sciences
96 rdf:type schema:DefinedTerm
97 sg:journal.1042000 schema:issn 0374-4884
98 1976-8524
99 schema:name Journal of the Korean Physical Society
100 schema:publisher Springer Nature
101 rdf:type schema:Periodical
102 sg:person.01264022063.12 schema:affiliation grid-institutes:grid.411661.5
103 schema:familyName Kim
104 schema:givenName Seung-Yeon
105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01264022063.12
106 rdf:type schema:Person
107 sg:pub.10.1007/bf01386092 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012489555
108 https://doi.org/10.1007/bf01386092
109 rdf:type schema:CreativeWork
110 sg:pub.10.1023/a:1004836227767 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046358983
111 https://doi.org/10.1023/a:1004836227767
112 rdf:type schema:CreativeWork
113 sg:pub.10.1140/epjb/e2008-00359-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048084860
114 https://doi.org/10.1140/epjb/e2008-00359-6
115 rdf:type schema:CreativeWork
116 sg:pub.10.3938/jkps.67.1517 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050673161
117 https://doi.org/10.3938/jkps.67.1517
118 rdf:type schema:CreativeWork
119 sg:pub.10.3938/jkps.72.646 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101695611
120 https://doi.org/10.3938/jkps.72.646
121 rdf:type schema:CreativeWork
122 sg:pub.10.3938/jkps.72.653 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101699158
123 https://doi.org/10.3938/jkps.72.653
124 rdf:type schema:CreativeWork
125 sg:pub.10.3938/jkps.77.630 schema:sameAs https://app.dimensions.ai/details/publication/pub.1132139385
126 https://doi.org/10.3938/jkps.77.630
127 rdf:type schema:CreativeWork
128 grid-institutes:grid.411661.5 schema:alternateName School of Liberal Arts and Sciences, Korea National University of Transportation, 27469, Chungju, Korea
129 schema:name School of Liberal Arts and Sciences, Korea National University of Transportation, 27469, Chungju, Korea
130 rdf:type schema:Organization