Assessment of Tribological Performance of Al-Coconut Shell Ash Particulate—MMCs using Grey-Fuzzy Approach View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-02

AUTHORS

Sivasankara Raju Rallabandi, Gunji Srinivasa Rao

ABSTRACT

This paper deals with optimization of wear behaviour on aluminium metal matrix composites (AMC) filler by coconut shell ash (CSA) on pin-on-disc setup. The Al-CSA composites are fabricated with various volume percentages such as 5, 10 and 15% of CSA using compo casting technique. The properties of Al-CSA composites have been improve with increasing volume of CSA in base matrix. The experiments are carried out with three process parameters: load, percentage of CSA and sliding distance; and three adequate responses: wear (µm), wear rate (mm3/m) and coefficient of friction. This studied, a hybrid approach (that is, Grey-fuzzy) has been applied to optimizing the several responses. The fuzzy logic concept has been used for handling the uncertainty in the decision-making process. Analysis of variance (ANOVA) shown that the highest influencing parameter is load, followed with sliding distance and percentage of CSAp to the overall tribological performance. More... »

PAGES

1-10

References to SciGraph publications

  • 2000-05. Frictional characteristics of Al–SiC composite brake discs in TRIBOLOGY LETTERS
  • 2003-02. Aluminium matrix composites: Challenges and opportunities in SĀDHANĀ
  • 2016-01. Mechanical and Tribological Behavior of ABS/TiO2 Polymer Composites and Optimization of Tribological Properties Using Grey Relational Analysis in JOURNAL OF THE INSTITUTION OF ENGINEERS (INDIA): SERIES C
  • 2018-10. Mechanical Behaviour of Aluminium Dispersed Unsaturated Polyester/Jute Composites for Structural Applications in JOURNAL OF THE INSTITUTION OF ENGINEERS (INDIA): SERIES C
  • 2015-10. Development of a Novel Aluminium Based Metal Matrix Composite using Insitu Ternary Mixture (Al2O3-SiC-C) Prepared by Thermal Treatment of Fly-ash in TRANSACTIONS OF THE INDIAN INSTITUTE OF METALS
  • 2012-09. Application of grey-taguchi method for optimization of dry sliding wear properties of aluminum MMCs in FRONTIERS OF MECHANICAL ENGINEERING
  • 2016-10. Tribological Performance Optimization of Electroless Ni–B Coating under Lubricated Condition using Hybrid Grey Fuzzy Logic in JOURNAL OF THE INSTITUTION OF ENGINEERS (INDIA): SERIES D
  • 2017-10. Tribological Wear Behaviour and Hardness Measurement of SiC, Al2O3 Reinforced Al. Matrix Hybrid Composite in JOURNAL OF THE INSTITUTION OF ENGINEERS (INDIA): SERIES D
  • 2017-04. Wear Behaviour of Al-6061/SiC Metal Matrix Composites in JOURNAL OF THE INSTITUTION OF ENGINEERS (INDIA): SERIES C
  • 1997-01. Friction and abrasion resistance of cast aluminum alloy-fly ash composites in METALLURGICAL AND MATERIALS TRANSACTIONS A
  • 2012-09. Dry sliding wear behaviour of fly ash particles reinforced AA 2024 composites in MATERIALS SCIENCE-POLAND
  • 1992-07. Metal-matrix composites for electronic packaging in JOM
  • 2016-06. Application of orthogonal array technique and particle swarm optimization approach in surface roughness modification when face milling AISI1045 steel parts in JOURNAL OF INDUSTRIAL ENGINEERING INTERNATIONAL
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s40032-017-0388-4

    DOI

    http://dx.doi.org/10.1007/s40032-017-0388-4

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1092166762


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Materials Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Biju Patnaik University of Technology", 
              "id": "https://www.grid.ac/institutes/grid.449488.d", 
              "name": [
                "Department of Mechanical Engineering, Gandhi Institute of Engineering and Technology, 765002, Gunupur, Odisha, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Rallabandi", 
            "givenName": "Sivasankara Raju", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Acharya Nagarjuna University", 
              "id": "https://www.grid.ac/institutes/grid.411114.0", 
              "name": [
                "Department of Mechanical Engineering, RVR & JC College of Engineering, 522006, Guntur, Andhra Pradesh, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Srinivasa Rao", 
            "givenName": "Gunji", 
            "id": "sg:person.011335707271.08", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011335707271.08"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s11465-012-0329-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001619316", 
              "https://doi.org/10.1007/s11465-012-0329-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1179/1751584x13y.0000000050", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001985993"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.scient.2012.12.005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005051425"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s1003-6326(11)61317-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006366679"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11661-997-0102-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007072184", 
              "https://doi.org/10.1007/s11661-997-0102-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11661-997-0102-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007072184", 
              "https://doi.org/10.1007/s11661-997-0102-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jmatprotec.2006.10.021", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009105293"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0019-9958(65)90241-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009640697"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.eswa.2011.11.110", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012547941"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.eswa.2011.07.067", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014827652"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.matdes.2008.04.014", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016398201"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jmrt.2013.03.012", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016778816"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.compscitech.2007.03.028", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020598134"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s40032-016-0284-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021609525", 
              "https://doi.org/10.1007/s40032-016-0284-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s40032-016-0284-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021609525", 
              "https://doi.org/10.1007/s40032-016-0284-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.wear.2007.11.009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022635143"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.matdes.2006.01.032", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024781275"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s40032-016-0329-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025335209", 
              "https://doi.org/10.1007/s40032-016-0329-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s40032-015-0192-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031204105", 
              "https://doi.org/10.1007/s40032-015-0192-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf03222270", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031792775", 
              "https://doi.org/10.1007/bf03222270"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s40033-015-0098-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032471677", 
              "https://doi.org/10.1007/s40033-015-0098-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.matdes.2010.04.053", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033356524"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12666-015-0532-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034291857", 
              "https://doi.org/10.1007/s12666-015-0532-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.2478/s13536-012-0026-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035476839", 
              "https://doi.org/10.2478/s13536-012-0026-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.matdes.2014.06.054", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038100395"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.matdes.2010.05.055", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044213505"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s40033-016-0134-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045044118", 
              "https://doi.org/10.1007/s40033-016-0134-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s40033-016-0134-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045044118", 
              "https://doi.org/10.1007/s40033-016-0134-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.matdes.2012.02.013", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046099613"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1155/2013/272106", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046167062"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02717141", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047841515", 
              "https://doi.org/10.1007/bf02717141"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02717141", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047841515", 
              "https://doi.org/10.1007/bf02717141"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.triboint.2010.11.018", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048240517"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s40092-015-0137-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048538992", 
              "https://doi.org/10.1007/s40092-015-0137-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s40092-015-0137-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048538992", 
              "https://doi.org/10.1007/s40092-015-0137-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0261-3069(02)00143-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048767529"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0261-3069(02)00143-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048767529"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.compositesb.2013.02.030", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049397867"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1019159923619", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049873189", 
              "https://doi.org/10.1023/a:1019159923619"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.rinp.2012.09.003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051453910"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/00401706.1989.10488519", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058286217"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1142/s201019451200253x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1063027627"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1177/1350650115570696", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1063988356"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1177/1350650115570696", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1063988356"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.12693/aphyspola.124.11", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064623476"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.14429/dsj.43.4336", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1067306231"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.9734/irjpac/2013/2906", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1074140032"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-02", 
        "datePublishedReg": "2019-02-01", 
        "description": "This paper deals with optimization of wear behaviour on aluminium metal matrix composites (AMC) filler by coconut shell ash (CSA) on pin-on-disc setup. The Al-CSA composites are fabricated with various volume percentages such as 5, 10 and 15% of CSA using compo casting technique. The properties of Al-CSA composites have been improve with increasing volume of CSA in base matrix. The experiments are carried out with three process parameters: load, percentage of CSA and sliding distance; and three adequate responses: wear (\u00b5m), wear rate (mm3/m) and coefficient of friction. This studied, a hybrid approach (that is, Grey-fuzzy) has been applied to optimizing the several responses. The fuzzy logic concept has been used for handling the uncertainty in the decision-making process. Analysis of variance (ANOVA) shown that the highest influencing parameter is load, followed with sliding distance and percentage of CSAp to the overall tribological performance.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s40032-017-0388-4", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136355", 
            "issn": [
              "2250-0545", 
              "2250-0553"
            ], 
            "name": "Journal of The Institution of Engineers (India): Series C", 
            "type": "Periodical"
          }
        ], 
        "name": "Assessment of Tribological Performance of Al-Coconut Shell Ash Particulate\u2014MMCs using Grey-Fuzzy Approach", 
        "pagination": "1-10", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "12500d9ece954f7ddf35c123cc5be9c7d95ce6eec586aeb309f0f498b85fa726"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s40032-017-0388-4"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1092166762"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s40032-017-0388-4", 
          "https://app.dimensions.ai/details/publication/pub.1092166762"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T00:30", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8695_00000601.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs40032-017-0388-4"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s40032-017-0388-4'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s40032-017-0388-4'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s40032-017-0388-4'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s40032-017-0388-4'


     

    This table displays all metadata directly associated to this object as RDF triples.

    197 TRIPLES      21 PREDICATES      65 URIs      17 LITERALS      5 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s40032-017-0388-4 schema:about anzsrc-for:09
    2 anzsrc-for:0912
    3 schema:author N0f8a9a371b76421dbf9bafb70fafec36
    4 schema:citation sg:pub.10.1007/bf02717141
    5 sg:pub.10.1007/bf03222270
    6 sg:pub.10.1007/s11465-012-0329-0
    7 sg:pub.10.1007/s11661-997-0102-x
    8 sg:pub.10.1007/s12666-015-0532-x
    9 sg:pub.10.1007/s40032-015-0192-y
    10 sg:pub.10.1007/s40032-016-0284-3
    11 sg:pub.10.1007/s40032-016-0329-7
    12 sg:pub.10.1007/s40033-015-0098-0
    13 sg:pub.10.1007/s40033-016-0134-8
    14 sg:pub.10.1007/s40092-015-0137-3
    15 sg:pub.10.1023/a:1019159923619
    16 sg:pub.10.2478/s13536-012-0026-z
    17 https://doi.org/10.1016/j.compositesb.2013.02.030
    18 https://doi.org/10.1016/j.compscitech.2007.03.028
    19 https://doi.org/10.1016/j.eswa.2011.07.067
    20 https://doi.org/10.1016/j.eswa.2011.11.110
    21 https://doi.org/10.1016/j.jmatprotec.2006.10.021
    22 https://doi.org/10.1016/j.jmrt.2013.03.012
    23 https://doi.org/10.1016/j.matdes.2006.01.032
    24 https://doi.org/10.1016/j.matdes.2008.04.014
    25 https://doi.org/10.1016/j.matdes.2010.04.053
    26 https://doi.org/10.1016/j.matdes.2010.05.055
    27 https://doi.org/10.1016/j.matdes.2012.02.013
    28 https://doi.org/10.1016/j.matdes.2014.06.054
    29 https://doi.org/10.1016/j.rinp.2012.09.003
    30 https://doi.org/10.1016/j.scient.2012.12.005
    31 https://doi.org/10.1016/j.triboint.2010.11.018
    32 https://doi.org/10.1016/j.wear.2007.11.009
    33 https://doi.org/10.1016/s0019-9958(65)90241-x
    34 https://doi.org/10.1016/s0261-3069(02)00143-7
    35 https://doi.org/10.1016/s1003-6326(11)61317-4
    36 https://doi.org/10.1080/00401706.1989.10488519
    37 https://doi.org/10.1142/s201019451200253x
    38 https://doi.org/10.1155/2013/272106
    39 https://doi.org/10.1177/1350650115570696
    40 https://doi.org/10.1179/1751584x13y.0000000050
    41 https://doi.org/10.12693/aphyspola.124.11
    42 https://doi.org/10.14429/dsj.43.4336
    43 https://doi.org/10.9734/irjpac/2013/2906
    44 schema:datePublished 2019-02
    45 schema:datePublishedReg 2019-02-01
    46 schema:description This paper deals with optimization of wear behaviour on aluminium metal matrix composites (AMC) filler by coconut shell ash (CSA) on pin-on-disc setup. The Al-CSA composites are fabricated with various volume percentages such as 5, 10 and 15% of CSA using compo casting technique. The properties of Al-CSA composites have been improve with increasing volume of CSA in base matrix. The experiments are carried out with three process parameters: load, percentage of CSA and sliding distance; and three adequate responses: wear (µm), wear rate (mm3/m) and coefficient of friction. This studied, a hybrid approach (that is, Grey-fuzzy) has been applied to optimizing the several responses. The fuzzy logic concept has been used for handling the uncertainty in the decision-making process. Analysis of variance (ANOVA) shown that the highest influencing parameter is load, followed with sliding distance and percentage of CSAp to the overall tribological performance.
    47 schema:genre research_article
    48 schema:inLanguage en
    49 schema:isAccessibleForFree false
    50 schema:isPartOf sg:journal.1136355
    51 schema:name Assessment of Tribological Performance of Al-Coconut Shell Ash Particulate—MMCs using Grey-Fuzzy Approach
    52 schema:pagination 1-10
    53 schema:productId N3430e0b29f544ef09489f6290c843e62
    54 N67127e57c33d4f20ae834da39094a900
    55 Nc4a512ab3fda4f9c97d60392e23df3b1
    56 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092166762
    57 https://doi.org/10.1007/s40032-017-0388-4
    58 schema:sdDatePublished 2019-04-11T00:30
    59 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    60 schema:sdPublisher Nf39d711a95f4498cb10327437bd86e23
    61 schema:url https://link.springer.com/10.1007%2Fs40032-017-0388-4
    62 sgo:license sg:explorer/license/
    63 sgo:sdDataset articles
    64 rdf:type schema:ScholarlyArticle
    65 N0f8a9a371b76421dbf9bafb70fafec36 rdf:first N938e14800e1a4ff0b11b2a080142049a
    66 rdf:rest N9942b2db5b6f4ae0a84478e77c322ffa
    67 N3430e0b29f544ef09489f6290c843e62 schema:name readcube_id
    68 schema:value 12500d9ece954f7ddf35c123cc5be9c7d95ce6eec586aeb309f0f498b85fa726
    69 rdf:type schema:PropertyValue
    70 N67127e57c33d4f20ae834da39094a900 schema:name dimensions_id
    71 schema:value pub.1092166762
    72 rdf:type schema:PropertyValue
    73 N938e14800e1a4ff0b11b2a080142049a schema:affiliation https://www.grid.ac/institutes/grid.449488.d
    74 schema:familyName Rallabandi
    75 schema:givenName Sivasankara Raju
    76 rdf:type schema:Person
    77 N9942b2db5b6f4ae0a84478e77c322ffa rdf:first sg:person.011335707271.08
    78 rdf:rest rdf:nil
    79 Nc4a512ab3fda4f9c97d60392e23df3b1 schema:name doi
    80 schema:value 10.1007/s40032-017-0388-4
    81 rdf:type schema:PropertyValue
    82 Nf39d711a95f4498cb10327437bd86e23 schema:name Springer Nature - SN SciGraph project
    83 rdf:type schema:Organization
    84 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    85 schema:name Engineering
    86 rdf:type schema:DefinedTerm
    87 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
    88 schema:name Materials Engineering
    89 rdf:type schema:DefinedTerm
    90 sg:journal.1136355 schema:issn 2250-0545
    91 2250-0553
    92 schema:name Journal of The Institution of Engineers (India): Series C
    93 rdf:type schema:Periodical
    94 sg:person.011335707271.08 schema:affiliation https://www.grid.ac/institutes/grid.411114.0
    95 schema:familyName Srinivasa Rao
    96 schema:givenName Gunji
    97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011335707271.08
    98 rdf:type schema:Person
    99 sg:pub.10.1007/bf02717141 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047841515
    100 https://doi.org/10.1007/bf02717141
    101 rdf:type schema:CreativeWork
    102 sg:pub.10.1007/bf03222270 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031792775
    103 https://doi.org/10.1007/bf03222270
    104 rdf:type schema:CreativeWork
    105 sg:pub.10.1007/s11465-012-0329-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001619316
    106 https://doi.org/10.1007/s11465-012-0329-0
    107 rdf:type schema:CreativeWork
    108 sg:pub.10.1007/s11661-997-0102-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1007072184
    109 https://doi.org/10.1007/s11661-997-0102-x
    110 rdf:type schema:CreativeWork
    111 sg:pub.10.1007/s12666-015-0532-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1034291857
    112 https://doi.org/10.1007/s12666-015-0532-x
    113 rdf:type schema:CreativeWork
    114 sg:pub.10.1007/s40032-015-0192-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1031204105
    115 https://doi.org/10.1007/s40032-015-0192-y
    116 rdf:type schema:CreativeWork
    117 sg:pub.10.1007/s40032-016-0284-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021609525
    118 https://doi.org/10.1007/s40032-016-0284-3
    119 rdf:type schema:CreativeWork
    120 sg:pub.10.1007/s40032-016-0329-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025335209
    121 https://doi.org/10.1007/s40032-016-0329-7
    122 rdf:type schema:CreativeWork
    123 sg:pub.10.1007/s40033-015-0098-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032471677
    124 https://doi.org/10.1007/s40033-015-0098-0
    125 rdf:type schema:CreativeWork
    126 sg:pub.10.1007/s40033-016-0134-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045044118
    127 https://doi.org/10.1007/s40033-016-0134-8
    128 rdf:type schema:CreativeWork
    129 sg:pub.10.1007/s40092-015-0137-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048538992
    130 https://doi.org/10.1007/s40092-015-0137-3
    131 rdf:type schema:CreativeWork
    132 sg:pub.10.1023/a:1019159923619 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049873189
    133 https://doi.org/10.1023/a:1019159923619
    134 rdf:type schema:CreativeWork
    135 sg:pub.10.2478/s13536-012-0026-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1035476839
    136 https://doi.org/10.2478/s13536-012-0026-z
    137 rdf:type schema:CreativeWork
    138 https://doi.org/10.1016/j.compositesb.2013.02.030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049397867
    139 rdf:type schema:CreativeWork
    140 https://doi.org/10.1016/j.compscitech.2007.03.028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020598134
    141 rdf:type schema:CreativeWork
    142 https://doi.org/10.1016/j.eswa.2011.07.067 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014827652
    143 rdf:type schema:CreativeWork
    144 https://doi.org/10.1016/j.eswa.2011.11.110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012547941
    145 rdf:type schema:CreativeWork
    146 https://doi.org/10.1016/j.jmatprotec.2006.10.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009105293
    147 rdf:type schema:CreativeWork
    148 https://doi.org/10.1016/j.jmrt.2013.03.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016778816
    149 rdf:type schema:CreativeWork
    150 https://doi.org/10.1016/j.matdes.2006.01.032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024781275
    151 rdf:type schema:CreativeWork
    152 https://doi.org/10.1016/j.matdes.2008.04.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016398201
    153 rdf:type schema:CreativeWork
    154 https://doi.org/10.1016/j.matdes.2010.04.053 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033356524
    155 rdf:type schema:CreativeWork
    156 https://doi.org/10.1016/j.matdes.2010.05.055 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044213505
    157 rdf:type schema:CreativeWork
    158 https://doi.org/10.1016/j.matdes.2012.02.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046099613
    159 rdf:type schema:CreativeWork
    160 https://doi.org/10.1016/j.matdes.2014.06.054 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038100395
    161 rdf:type schema:CreativeWork
    162 https://doi.org/10.1016/j.rinp.2012.09.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051453910
    163 rdf:type schema:CreativeWork
    164 https://doi.org/10.1016/j.scient.2012.12.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005051425
    165 rdf:type schema:CreativeWork
    166 https://doi.org/10.1016/j.triboint.2010.11.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048240517
    167 rdf:type schema:CreativeWork
    168 https://doi.org/10.1016/j.wear.2007.11.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022635143
    169 rdf:type schema:CreativeWork
    170 https://doi.org/10.1016/s0019-9958(65)90241-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1009640697
    171 rdf:type schema:CreativeWork
    172 https://doi.org/10.1016/s0261-3069(02)00143-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048767529
    173 rdf:type schema:CreativeWork
    174 https://doi.org/10.1016/s1003-6326(11)61317-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006366679
    175 rdf:type schema:CreativeWork
    176 https://doi.org/10.1080/00401706.1989.10488519 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058286217
    177 rdf:type schema:CreativeWork
    178 https://doi.org/10.1142/s201019451200253x schema:sameAs https://app.dimensions.ai/details/publication/pub.1063027627
    179 rdf:type schema:CreativeWork
    180 https://doi.org/10.1155/2013/272106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046167062
    181 rdf:type schema:CreativeWork
    182 https://doi.org/10.1177/1350650115570696 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063988356
    183 rdf:type schema:CreativeWork
    184 https://doi.org/10.1179/1751584x13y.0000000050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001985993
    185 rdf:type schema:CreativeWork
    186 https://doi.org/10.12693/aphyspola.124.11 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064623476
    187 rdf:type schema:CreativeWork
    188 https://doi.org/10.14429/dsj.43.4336 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067306231
    189 rdf:type schema:CreativeWork
    190 https://doi.org/10.9734/irjpac/2013/2906 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074140032
    191 rdf:type schema:CreativeWork
    192 https://www.grid.ac/institutes/grid.411114.0 schema:alternateName Acharya Nagarjuna University
    193 schema:name Department of Mechanical Engineering, RVR & JC College of Engineering, 522006, Guntur, Andhra Pradesh, India
    194 rdf:type schema:Organization
    195 https://www.grid.ac/institutes/grid.449488.d schema:alternateName Biju Patnaik University of Technology
    196 schema:name Department of Mechanical Engineering, Gandhi Institute of Engineering and Technology, 765002, Gunupur, Odisha, India
    197 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...