An Approximation Method for Solving Burgers’ Equation Using Legendre Wavelets View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-02-04

AUTHORS

S. G. Venkatesh, S. K. Ayyaswamy, S. Raja Balachandar

ABSTRACT

In this paper, we study the solution of the Burgers’ equation, a non-linear Partial Differential equation, using Legendre wavelets based technique. Burgers’ equation is an essential partial differential equation from fluid mechanics and is also used extensively in other areas of engineering such as gas dynamics, traffic flow modeling, acoustic wave propagation, and so on. The method is based on the function approximation so that that the connection coefficients can be identified easily and the series is the approximate solution or in closed form is the exact solution. Illustrative examples have been demonstrated to promote validity and applicability of the proposed method. More... »

PAGES

257-266

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s40010-016-0326-5

DOI

http://dx.doi.org/10.1007/s40010-016-0326-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1083537305


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Numerical and Computational Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Mathematics, School of Humanities and Sciences, SASTRA University, 613401, Thanjavur, Tamilnadu, India", 
          "id": "http://www.grid.ac/institutes/grid.412423.2", 
          "name": [
            "Department of Mathematics, School of Humanities and Sciences, SASTRA University, 613401, Thanjavur, Tamilnadu, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Venkatesh", 
        "givenName": "S. G.", 
        "id": "sg:person.016362377513.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016362377513.17"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mathematics, School of Humanities and Sciences, SASTRA University, 613401, Thanjavur, Tamilnadu, India", 
          "id": "http://www.grid.ac/institutes/grid.412423.2", 
          "name": [
            "Department of Mathematics, School of Humanities and Sciences, SASTRA University, 613401, Thanjavur, Tamilnadu, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ayyaswamy", 
        "givenName": "S. K.", 
        "id": "sg:person.012731150277.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012731150277.33"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mathematics, School of Humanities and Sciences, SASTRA University, 613401, Thanjavur, Tamilnadu, India", 
          "id": "http://www.grid.ac/institutes/grid.412423.2", 
          "name": [
            "Department of Mathematics, School of Humanities and Sciences, SASTRA University, 613401, Thanjavur, Tamilnadu, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Raja Balachandar", 
        "givenName": "S.", 
        "id": "sg:person.010674212772.66", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010674212772.66"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf02810622", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031759318", 
          "https://doi.org/10.1007/bf02810622"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11075-007-9071-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034959449", 
          "https://doi.org/10.1007/s11075-007-9071-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10915-005-9052-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030663239", 
          "https://doi.org/10.1007/s10915-005-9052-x"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-02-04", 
    "datePublishedReg": "2017-02-04", 
    "description": "Abstract\nIn this paper, we study the solution of the Burgers\u2019 equation, a non-linear Partial Differential equation, using Legendre wavelets based technique. Burgers\u2019 equation is an essential partial differential equation from fluid mechanics and is also used extensively in other areas of engineering such as gas dynamics, traffic flow modeling, acoustic wave propagation, and so on. The method is based on the function approximation so that that the connection coefficients can be identified easily and the series is the approximate solution or in closed form is the exact solution. Illustrative examples have been demonstrated to promote validity and applicability of the proposed method.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s40010-016-0326-5", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136247", 
        "issn": [
          "0369-8203", 
          "2250-1762"
        ], 
        "name": "Proceedings of the National Academy of Sciences, India Section A: Physical Sciences", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "87"
      }
    ], 
    "keywords": [
      "partial differential equations", 
      "Legendre wavelets", 
      "differential equations", 
      "non-linear partial differential equations", 
      "acoustic wave propagation", 
      "traffic flow modeling", 
      "Burgers equation", 
      "areas of engineering", 
      "approximate solution", 
      "exact solution", 
      "approximation method", 
      "gas dynamics", 
      "connection coefficients", 
      "wave propagation", 
      "closed form", 
      "fluid mechanics", 
      "function approximation", 
      "equations", 
      "illustrative example", 
      "flow modeling", 
      "Burgers", 
      "solution", 
      "approximation", 
      "wavelets", 
      "mechanics", 
      "propagation", 
      "dynamics", 
      "modeling", 
      "applicability", 
      "engineering", 
      "method", 
      "coefficient", 
      "validity", 
      "technique", 
      "form", 
      "example", 
      "area", 
      "series", 
      "paper"
    ], 
    "name": "An Approximation Method for Solving Burgers\u2019 Equation Using Legendre Wavelets", 
    "pagination": "257-266", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1083537305"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s40010-016-0326-5"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s40010-016-0326-5", 
      "https://app.dimensions.ai/details/publication/pub.1083537305"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-12-01T06:36", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_736.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s40010-016-0326-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s40010-016-0326-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s40010-016-0326-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s40010-016-0326-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s40010-016-0326-5'


 

This table displays all metadata directly associated to this object as RDF triples.

122 TRIPLES      21 PREDICATES      66 URIs      55 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s40010-016-0326-5 schema:about anzsrc-for:01
2 anzsrc-for:0103
3 schema:author N07dba849df6b4fde860fde402da3472e
4 schema:citation sg:pub.10.1007/bf02810622
5 sg:pub.10.1007/s10915-005-9052-x
6 sg:pub.10.1007/s11075-007-9071-9
7 schema:datePublished 2017-02-04
8 schema:datePublishedReg 2017-02-04
9 schema:description Abstract In this paper, we study the solution of the Burgers’ equation, a non-linear Partial Differential equation, using Legendre wavelets based technique. Burgers’ equation is an essential partial differential equation from fluid mechanics and is also used extensively in other areas of engineering such as gas dynamics, traffic flow modeling, acoustic wave propagation, and so on. The method is based on the function approximation so that that the connection coefficients can be identified easily and the series is the approximate solution or in closed form is the exact solution. Illustrative examples have been demonstrated to promote validity and applicability of the proposed method.
10 schema:genre article
11 schema:isAccessibleForFree false
12 schema:isPartOf Ne23fce9a4fa6440793ab4907bfad198b
13 Ne9f08b34d53f43d78e02da2ae2c252fc
14 sg:journal.1136247
15 schema:keywords Burgers
16 Burgers equation
17 Legendre wavelets
18 acoustic wave propagation
19 applicability
20 approximate solution
21 approximation
22 approximation method
23 area
24 areas of engineering
25 closed form
26 coefficient
27 connection coefficients
28 differential equations
29 dynamics
30 engineering
31 equations
32 exact solution
33 example
34 flow modeling
35 fluid mechanics
36 form
37 function approximation
38 gas dynamics
39 illustrative example
40 mechanics
41 method
42 modeling
43 non-linear partial differential equations
44 paper
45 partial differential equations
46 propagation
47 series
48 solution
49 technique
50 traffic flow modeling
51 validity
52 wave propagation
53 wavelets
54 schema:name An Approximation Method for Solving Burgers’ Equation Using Legendre Wavelets
55 schema:pagination 257-266
56 schema:productId Nc43b8e980012476b83306a5b559b7bee
57 Nf6196b79c72f4bf08557787979a4f007
58 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083537305
59 https://doi.org/10.1007/s40010-016-0326-5
60 schema:sdDatePublished 2022-12-01T06:36
61 schema:sdLicense https://scigraph.springernature.com/explorer/license/
62 schema:sdPublisher N6b380a0722b048478d0b587a8e6c3768
63 schema:url https://doi.org/10.1007/s40010-016-0326-5
64 sgo:license sg:explorer/license/
65 sgo:sdDataset articles
66 rdf:type schema:ScholarlyArticle
67 N07dba849df6b4fde860fde402da3472e rdf:first sg:person.016362377513.17
68 rdf:rest Nf649c45532764fda95f494cdcdf07caa
69 N6b380a0722b048478d0b587a8e6c3768 schema:name Springer Nature - SN SciGraph project
70 rdf:type schema:Organization
71 Na51ed3f70c2d4fcc8f36115d9d53b2b0 rdf:first sg:person.010674212772.66
72 rdf:rest rdf:nil
73 Nc43b8e980012476b83306a5b559b7bee schema:name dimensions_id
74 schema:value pub.1083537305
75 rdf:type schema:PropertyValue
76 Ne23fce9a4fa6440793ab4907bfad198b schema:volumeNumber 87
77 rdf:type schema:PublicationVolume
78 Ne9f08b34d53f43d78e02da2ae2c252fc schema:issueNumber 2
79 rdf:type schema:PublicationIssue
80 Nf6196b79c72f4bf08557787979a4f007 schema:name doi
81 schema:value 10.1007/s40010-016-0326-5
82 rdf:type schema:PropertyValue
83 Nf649c45532764fda95f494cdcdf07caa rdf:first sg:person.012731150277.33
84 rdf:rest Na51ed3f70c2d4fcc8f36115d9d53b2b0
85 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
86 schema:name Mathematical Sciences
87 rdf:type schema:DefinedTerm
88 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
89 schema:name Numerical and Computational Mathematics
90 rdf:type schema:DefinedTerm
91 sg:journal.1136247 schema:issn 0369-8203
92 2250-1762
93 schema:name Proceedings of the National Academy of Sciences, India Section A: Physical Sciences
94 schema:publisher Springer Nature
95 rdf:type schema:Periodical
96 sg:person.010674212772.66 schema:affiliation grid-institutes:grid.412423.2
97 schema:familyName Raja Balachandar
98 schema:givenName S.
99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010674212772.66
100 rdf:type schema:Person
101 sg:person.012731150277.33 schema:affiliation grid-institutes:grid.412423.2
102 schema:familyName Ayyaswamy
103 schema:givenName S. K.
104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012731150277.33
105 rdf:type schema:Person
106 sg:person.016362377513.17 schema:affiliation grid-institutes:grid.412423.2
107 schema:familyName Venkatesh
108 schema:givenName S. G.
109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016362377513.17
110 rdf:type schema:Person
111 sg:pub.10.1007/bf02810622 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031759318
112 https://doi.org/10.1007/bf02810622
113 rdf:type schema:CreativeWork
114 sg:pub.10.1007/s10915-005-9052-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1030663239
115 https://doi.org/10.1007/s10915-005-9052-x
116 rdf:type schema:CreativeWork
117 sg:pub.10.1007/s11075-007-9071-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034959449
118 https://doi.org/10.1007/s11075-007-9071-9
119 rdf:type schema:CreativeWork
120 grid-institutes:grid.412423.2 schema:alternateName Department of Mathematics, School of Humanities and Sciences, SASTRA University, 613401, Thanjavur, Tamilnadu, India
121 schema:name Department of Mathematics, School of Humanities and Sciences, SASTRA University, 613401, Thanjavur, Tamilnadu, India
122 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...