Eisenstein series attached to lattices¶and modular forms on orthogonal groups View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2001-12

AUTHORS

Jan Hendrik Bruinier, Michael Kuss

ABSTRACT

We study certain vector valued Eisenstein series on the metaplectic cover of SL2(ℝ), which transform with the Weil representation associated with the discriminant group of an even lattice L. We find a closed formula for the Fourier coefficients in terms of Dirichlet L-series and representation numbers of L modulo “bad” primes. Such Eisenstein series naturally occur in the context of Borcherds' theory of automorphic products. We indicate some applications to modular forms on the orthogonal group of L with zeros on Heegner divisors. More... »

PAGES

443-459

Journal

TITLE

manuscripta mathematica

ISSUE

4

VOLUME

106

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s229-001-8027-1

DOI

http://dx.doi.org/10.1007/s229-001-8027-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1050310720


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Heidelberg University", 
          "id": "https://www.grid.ac/institutes/grid.7700.0", 
          "name": [
            "Universit\u00e4t Heidelberg, Mathematisches Institut, Im Neuenheimer Feld 288, 69120 Heidelberg, Germany. E-mail: bruinier@mathi.uni-heidelberg.de; kuss@mathi.uni-heidelberg.de, DE"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bruinier", 
        "givenName": "Jan Hendrik", 
        "id": "sg:person.01127662625.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01127662625.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Heidelberg University", 
          "id": "https://www.grid.ac/institutes/grid.7700.0", 
          "name": [
            "Universit\u00e4t Heidelberg, Mathematisches Institut, Im Neuenheimer Feld 288, 69120 Heidelberg, Germany. E-mail: bruinier@mathi.uni-heidelberg.de; kuss@mathi.uni-heidelberg.de, DE"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kuss", 
        "givenName": "Michael", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf02568170", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013319163", 
          "https://doi.org/10.1007/bf02568170"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-61829-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020654513", 
          "https://doi.org/10.1007/978-3-642-61829-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-61829-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020654513", 
          "https://doi.org/10.1007/978-3-642-61829-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0027763000016706", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038551993"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01420529", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043684230", 
          "https://doi.org/10.1007/bf01420529"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01420529", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043684230", 
          "https://doi.org/10.1007/bf01420529"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01436180", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043838697", 
          "https://doi.org/10.1007/bf01436180"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01436180", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043838697", 
          "https://doi.org/10.1007/bf01436180"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2001-12", 
    "datePublishedReg": "2001-12-01", 
    "description": "We study certain vector valued Eisenstein series on the metaplectic cover of SL2(\u211d), which transform with the Weil representation associated with the discriminant group of an even lattice L. We find a closed formula for the Fourier coefficients in terms of Dirichlet L-series and representation numbers of L modulo \u201cbad\u201d primes. Such Eisenstein series naturally occur in the context of Borcherds' theory of automorphic products. We indicate some applications to modular forms on the orthogonal group of L with zeros on Heegner divisors.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s229-001-8027-1", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136220", 
        "issn": [
          "0025-2611", 
          "1432-1785"
        ], 
        "name": "manuscripta mathematica", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "106"
      }
    ], 
    "name": "Eisenstein series attached to lattices\u00b6and modular forms on orthogonal groups", 
    "pagination": "443-459", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "efaa5f4c243c3fb866661b27ad0a991ea6882a5967d95b697fbf1c29649b3573"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s229-001-8027-1"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1050310720"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s229-001-8027-1", 
      "https://app.dimensions.ai/details/publication/pub.1050310720"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T23:27", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8693_00000524.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs229-001-8027-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s229-001-8027-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s229-001-8027-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s229-001-8027-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s229-001-8027-1'


 

This table displays all metadata directly associated to this object as RDF triples.

86 TRIPLES      21 PREDICATES      32 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s229-001-8027-1 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N67060fb65ed349cb9c25751ab04ccaf5
4 schema:citation sg:pub.10.1007/978-3-642-61829-1
5 sg:pub.10.1007/bf01420529
6 sg:pub.10.1007/bf01436180
7 sg:pub.10.1007/bf02568170
8 https://doi.org/10.1017/s0027763000016706
9 schema:datePublished 2001-12
10 schema:datePublishedReg 2001-12-01
11 schema:description We study certain vector valued Eisenstein series on the metaplectic cover of SL2(ℝ), which transform with the Weil representation associated with the discriminant group of an even lattice L. We find a closed formula for the Fourier coefficients in terms of Dirichlet L-series and representation numbers of L modulo “bad” primes. Such Eisenstein series naturally occur in the context of Borcherds' theory of automorphic products. We indicate some applications to modular forms on the orthogonal group of L with zeros on Heegner divisors.
12 schema:genre research_article
13 schema:inLanguage en
14 schema:isAccessibleForFree false
15 schema:isPartOf N5913ab25fc4a4548aeb28349cab5322e
16 N96371c35a34e452e9aa702718c704833
17 sg:journal.1136220
18 schema:name Eisenstein series attached to lattices¶and modular forms on orthogonal groups
19 schema:pagination 443-459
20 schema:productId Nb1486ef36e49456c9e9240887e0edb64
21 Ncf799696fa1847e3ada0aad9bede3015
22 Ne9563f7c4fc64595957456ada7b4bf20
23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050310720
24 https://doi.org/10.1007/s229-001-8027-1
25 schema:sdDatePublished 2019-04-10T23:27
26 schema:sdLicense https://scigraph.springernature.com/explorer/license/
27 schema:sdPublisher N8e15f7636c3645278c93a5f79801b215
28 schema:url http://link.springer.com/10.1007%2Fs229-001-8027-1
29 sgo:license sg:explorer/license/
30 sgo:sdDataset articles
31 rdf:type schema:ScholarlyArticle
32 N5913ab25fc4a4548aeb28349cab5322e schema:volumeNumber 106
33 rdf:type schema:PublicationVolume
34 N59b9bf2b159b4d8ab2ec209fc369d9c8 rdf:first Nb47d44960d734a69a89a3d72c9f17021
35 rdf:rest rdf:nil
36 N67060fb65ed349cb9c25751ab04ccaf5 rdf:first sg:person.01127662625.41
37 rdf:rest N59b9bf2b159b4d8ab2ec209fc369d9c8
38 N8e15f7636c3645278c93a5f79801b215 schema:name Springer Nature - SN SciGraph project
39 rdf:type schema:Organization
40 N96371c35a34e452e9aa702718c704833 schema:issueNumber 4
41 rdf:type schema:PublicationIssue
42 Nb1486ef36e49456c9e9240887e0edb64 schema:name readcube_id
43 schema:value efaa5f4c243c3fb866661b27ad0a991ea6882a5967d95b697fbf1c29649b3573
44 rdf:type schema:PropertyValue
45 Nb47d44960d734a69a89a3d72c9f17021 schema:affiliation https://www.grid.ac/institutes/grid.7700.0
46 schema:familyName Kuss
47 schema:givenName Michael
48 rdf:type schema:Person
49 Ncf799696fa1847e3ada0aad9bede3015 schema:name doi
50 schema:value 10.1007/s229-001-8027-1
51 rdf:type schema:PropertyValue
52 Ne9563f7c4fc64595957456ada7b4bf20 schema:name dimensions_id
53 schema:value pub.1050310720
54 rdf:type schema:PropertyValue
55 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
56 schema:name Mathematical Sciences
57 rdf:type schema:DefinedTerm
58 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
59 schema:name Pure Mathematics
60 rdf:type schema:DefinedTerm
61 sg:journal.1136220 schema:issn 0025-2611
62 1432-1785
63 schema:name manuscripta mathematica
64 rdf:type schema:Periodical
65 sg:person.01127662625.41 schema:affiliation https://www.grid.ac/institutes/grid.7700.0
66 schema:familyName Bruinier
67 schema:givenName Jan Hendrik
68 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01127662625.41
69 rdf:type schema:Person
70 sg:pub.10.1007/978-3-642-61829-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020654513
71 https://doi.org/10.1007/978-3-642-61829-1
72 rdf:type schema:CreativeWork
73 sg:pub.10.1007/bf01420529 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043684230
74 https://doi.org/10.1007/bf01420529
75 rdf:type schema:CreativeWork
76 sg:pub.10.1007/bf01436180 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043838697
77 https://doi.org/10.1007/bf01436180
78 rdf:type schema:CreativeWork
79 sg:pub.10.1007/bf02568170 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013319163
80 https://doi.org/10.1007/bf02568170
81 rdf:type schema:CreativeWork
82 https://doi.org/10.1017/s0027763000016706 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038551993
83 rdf:type schema:CreativeWork
84 https://www.grid.ac/institutes/grid.7700.0 schema:alternateName Heidelberg University
85 schema:name Universität Heidelberg, Mathematisches Institut, Im Neuenheimer Feld 288, 69120 Heidelberg, Germany. E-mail: bruinier@mathi.uni-heidelberg.de; kuss@mathi.uni-heidelberg.de, DE
86 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...