Application of TiO2-supported Au for ozone molecule removal from environment: a van der Waals-corrected DFT study View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-07-14

AUTHORS

A. Abbasi, J. J. Sardroodi

ABSTRACT

In this paper, we examined the interaction of ozone molecule with TiO2-supported Au nanoparticles by performing first-principles calculations within density functional theory. The structural properties including bond lengths, bond angles and adsorption energies were calculated. The electronic properties were analyzed in view of the Mulliken charges and projected density of states. The results show that the adsorption of O3 molecule on the N-doped TiO2-supported Au nanoparticle is more energetically favorable than the adsorption on the pristine one, suggesting that the N-doped TiO2-supported Au nanoparticle can react with O3 molecule more strongly. It was found that the O3 molecule tends to be strongly adsorbed on the surface of Au nanoparticles through its side oxygen atoms, providing a bridge geometry. On the TiO2 side of TiO2-supported Au overlayer, there is also a strong binding between the fivefold coordinated titanium atoms and the side oxygen atoms of O3 molecule, where the titanium atoms represent a double contacting point with oxygen atoms. Therefore, the obtained results also propose a theoretical basis for the potential applications of TiO2-supported Au nanoparticles in gas sensor devices. More... »

PAGES

3483-3496

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s13762-018-1733-8

DOI

http://dx.doi.org/10.1007/s13762-018-1733-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1105596922


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Chemistry, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran", 
          "id": "http://www.grid.ac/institutes/grid.411468.e", 
          "name": [
            "Molecular Simulation Laboratory (MSL), Azarbaijan Shahid Madani University, Tabriz, Iran", 
            "Computational Nanomaterials Research Group, Azarbaijan Shahid Madani University, Tabriz, Iran", 
            "Department of Chemistry, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Abbasi", 
        "givenName": "A.", 
        "id": "sg:person.014133055621.61", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014133055621.61"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Chemistry, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran", 
          "id": "http://www.grid.ac/institutes/grid.411468.e", 
          "name": [
            "Molecular Simulation Laboratory (MSL), Azarbaijan Shahid Madani University, Tabriz, Iran", 
            "Computational Nanomaterials Research Group, Azarbaijan Shahid Madani University, Tabriz, Iran", 
            "Department of Chemistry, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sardroodi", 
        "givenName": "J. J.", 
        "id": "sg:person.014264100262.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014264100262.28"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s10853-007-1496-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022979881", 
          "https://doi.org/10.1007/s10853-007-1496-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/238037a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011069243", 
          "https://doi.org/10.1038/238037a0"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-07-14", 
    "datePublishedReg": "2018-07-14", 
    "description": "In this paper, we examined the interaction of ozone molecule with TiO2-supported Au nanoparticles by performing first-principles calculations within density functional theory. The structural properties including bond lengths, bond angles and adsorption energies were calculated. The electronic properties were analyzed in view of the Mulliken charges and projected density of states. The results show that the adsorption of O3 molecule on the N-doped TiO2-supported Au nanoparticle is more energetically favorable than the adsorption on the pristine one, suggesting that the N-doped TiO2-supported Au nanoparticle can react with O3 molecule more strongly. It was found that the O3 molecule tends to be strongly adsorbed on the surface of Au nanoparticles through its side oxygen atoms, providing a bridge geometry. On the TiO2 side of TiO2-supported Au overlayer, there is also a strong binding between the fivefold coordinated titanium atoms and the side oxygen atoms of O3 molecule, where the titanium atoms represent a double contacting point with oxygen atoms. Therefore, the obtained results also propose a theoretical basis for the potential applications of TiO2-supported Au nanoparticles in gas sensor devices.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s13762-018-1733-8", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1036943", 
        "issn": [
          "1735-1472", 
          "1735-2630"
        ], 
        "name": "International Journal of Environmental Science and Technology", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "16"
      }
    ], 
    "keywords": [
      "TiO2-supported Au nanoparticles", 
      "Au nanoparticles", 
      "O3 molecules", 
      "oxygen atoms", 
      "fivefold coordinated titanium atoms", 
      "titanium atoms", 
      "coordinated titanium atoms", 
      "van der Waals", 
      "gas sensor devices", 
      "first-principles calculations", 
      "TiO2-supported Au", 
      "density functional theory", 
      "adsorption energy", 
      "Mulliken charges", 
      "ozone molecules", 
      "DFT study", 
      "bond angles", 
      "TiO2 side", 
      "bond lengths", 
      "electronic properties", 
      "der Waals", 
      "nanoparticles", 
      "functional theory", 
      "structural properties", 
      "strong binding", 
      "adsorption", 
      "atoms", 
      "molecules", 
      "density of states", 
      "potential applications", 
      "molecule removal", 
      "Au overlayer", 
      "sensor devices", 
      "bridge geometry", 
      "Waals", 
      "properties", 
      "overlayer", 
      "Au", 
      "charge", 
      "surface", 
      "applications", 
      "calculations", 
      "removal", 
      "energy", 
      "interaction", 
      "geometry", 
      "density", 
      "binding", 
      "devices", 
      "angle", 
      "state", 
      "results", 
      "length", 
      "environment", 
      "basis", 
      "theoretical basis", 
      "study", 
      "theory", 
      "point", 
      "side", 
      "view", 
      "paper", 
      "side oxygen atoms", 
      "TiO2-supported Au overlayer", 
      "ozone molecule removal"
    ], 
    "name": "Application of TiO2-supported Au for ozone molecule removal from environment: a van der Waals-corrected DFT study", 
    "pagination": "3483-3496", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1105596922"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s13762-018-1733-8"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s13762-018-1733-8", 
      "https://app.dimensions.ai/details/publication/pub.1105596922"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:50", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_784.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s13762-018-1733-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s13762-018-1733-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s13762-018-1733-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s13762-018-1733-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s13762-018-1733-8'


 

This table displays all metadata directly associated to this object as RDF triples.

140 TRIPLES      22 PREDICATES      92 URIs      82 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s13762-018-1733-8 schema:about anzsrc-for:03
2 anzsrc-for:0306
3 schema:author N25b4d7c1033b48b3a1e7e6a7a569d894
4 schema:citation sg:pub.10.1007/s10853-007-1496-y
5 sg:pub.10.1038/238037a0
6 schema:datePublished 2018-07-14
7 schema:datePublishedReg 2018-07-14
8 schema:description In this paper, we examined the interaction of ozone molecule with TiO2-supported Au nanoparticles by performing first-principles calculations within density functional theory. The structural properties including bond lengths, bond angles and adsorption energies were calculated. The electronic properties were analyzed in view of the Mulliken charges and projected density of states. The results show that the adsorption of O3 molecule on the N-doped TiO2-supported Au nanoparticle is more energetically favorable than the adsorption on the pristine one, suggesting that the N-doped TiO2-supported Au nanoparticle can react with O3 molecule more strongly. It was found that the O3 molecule tends to be strongly adsorbed on the surface of Au nanoparticles through its side oxygen atoms, providing a bridge geometry. On the TiO2 side of TiO2-supported Au overlayer, there is also a strong binding between the fivefold coordinated titanium atoms and the side oxygen atoms of O3 molecule, where the titanium atoms represent a double contacting point with oxygen atoms. Therefore, the obtained results also propose a theoretical basis for the potential applications of TiO2-supported Au nanoparticles in gas sensor devices.
9 schema:genre article
10 schema:inLanguage en
11 schema:isAccessibleForFree false
12 schema:isPartOf N8cce0c54eed24df6ba085ead9f9718e0
13 Nb409d558e711432280dda020ceec3c74
14 sg:journal.1036943
15 schema:keywords Au
16 Au nanoparticles
17 Au overlayer
18 DFT study
19 Mulliken charges
20 O3 molecules
21 TiO2 side
22 TiO2-supported Au
23 TiO2-supported Au nanoparticles
24 TiO2-supported Au overlayer
25 Waals
26 adsorption
27 adsorption energy
28 angle
29 applications
30 atoms
31 basis
32 binding
33 bond angles
34 bond lengths
35 bridge geometry
36 calculations
37 charge
38 coordinated titanium atoms
39 density
40 density functional theory
41 density of states
42 der Waals
43 devices
44 electronic properties
45 energy
46 environment
47 first-principles calculations
48 fivefold coordinated titanium atoms
49 functional theory
50 gas sensor devices
51 geometry
52 interaction
53 length
54 molecule removal
55 molecules
56 nanoparticles
57 overlayer
58 oxygen atoms
59 ozone molecule removal
60 ozone molecules
61 paper
62 point
63 potential applications
64 properties
65 removal
66 results
67 sensor devices
68 side
69 side oxygen atoms
70 state
71 strong binding
72 structural properties
73 study
74 surface
75 theoretical basis
76 theory
77 titanium atoms
78 van der Waals
79 view
80 schema:name Application of TiO2-supported Au for ozone molecule removal from environment: a van der Waals-corrected DFT study
81 schema:pagination 3483-3496
82 schema:productId N3f8ecfa631794e979eec6b7b1b64ace9
83 Nb7a6624f0e4d46a7abab1f1ae713e7b7
84 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105596922
85 https://doi.org/10.1007/s13762-018-1733-8
86 schema:sdDatePublished 2022-01-01T18:50
87 schema:sdLicense https://scigraph.springernature.com/explorer/license/
88 schema:sdPublisher N841d60978f374b6ba9f99a2fac3a290b
89 schema:url https://doi.org/10.1007/s13762-018-1733-8
90 sgo:license sg:explorer/license/
91 sgo:sdDataset articles
92 rdf:type schema:ScholarlyArticle
93 N25b4d7c1033b48b3a1e7e6a7a569d894 rdf:first sg:person.014133055621.61
94 rdf:rest Nfba13da5db814178b563383f4e2b9c51
95 N3f8ecfa631794e979eec6b7b1b64ace9 schema:name dimensions_id
96 schema:value pub.1105596922
97 rdf:type schema:PropertyValue
98 N841d60978f374b6ba9f99a2fac3a290b schema:name Springer Nature - SN SciGraph project
99 rdf:type schema:Organization
100 N8cce0c54eed24df6ba085ead9f9718e0 schema:issueNumber 7
101 rdf:type schema:PublicationIssue
102 Nb409d558e711432280dda020ceec3c74 schema:volumeNumber 16
103 rdf:type schema:PublicationVolume
104 Nb7a6624f0e4d46a7abab1f1ae713e7b7 schema:name doi
105 schema:value 10.1007/s13762-018-1733-8
106 rdf:type schema:PropertyValue
107 Nfba13da5db814178b563383f4e2b9c51 rdf:first sg:person.014264100262.28
108 rdf:rest rdf:nil
109 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
110 schema:name Chemical Sciences
111 rdf:type schema:DefinedTerm
112 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
113 schema:name Physical Chemistry (incl. Structural)
114 rdf:type schema:DefinedTerm
115 sg:journal.1036943 schema:issn 1735-1472
116 1735-2630
117 schema:name International Journal of Environmental Science and Technology
118 schema:publisher Springer Nature
119 rdf:type schema:Periodical
120 sg:person.014133055621.61 schema:affiliation grid-institutes:grid.411468.e
121 schema:familyName Abbasi
122 schema:givenName A.
123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014133055621.61
124 rdf:type schema:Person
125 sg:person.014264100262.28 schema:affiliation grid-institutes:grid.411468.e
126 schema:familyName Sardroodi
127 schema:givenName J. J.
128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014264100262.28
129 rdf:type schema:Person
130 sg:pub.10.1007/s10853-007-1496-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1022979881
131 https://doi.org/10.1007/s10853-007-1496-y
132 rdf:type schema:CreativeWork
133 sg:pub.10.1038/238037a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011069243
134 https://doi.org/10.1038/238037a0
135 rdf:type schema:CreativeWork
136 grid-institutes:grid.411468.e schema:alternateName Department of Chemistry, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran
137 schema:name Computational Nanomaterials Research Group, Azarbaijan Shahid Madani University, Tabriz, Iran
138 Department of Chemistry, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran
139 Molecular Simulation Laboratory (MSL), Azarbaijan Shahid Madani University, Tabriz, Iran
140 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...