Molecular dynamics simulation of the diffusion of nanoconfined fluids View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2014-02

AUTHORS

Nargess Mehdipour, Neda Mousavian, Hossein Eslami

ABSTRACT

A new molecular dynamics simulation technique for simulating fluids in confinement [H. Eslami, F. Mozaffari, J. Moghadasi, F. Müller-Plathe, J. Chem. Phys. 129 (2008) 194702] is employed to simulate the diffusion coefficient of nanoconfined Lennard-Jones fluid. The diffusing fluid is liquid Ar and the confining surfaces are solid Ar fcc (100) surfaces, which are kept frozen during the simulation. In this simulation just the fluid in confinement is simulated at a constant temperature and a constant parallel component of pressure, which is assumed to be equal to the bulk pressure. It is shown that the calculated parallel (to the surfaces) component of the diffusion coefficients depends on the distance between the surfaces (pore size) and shows oscillatory behavior with respect to the intersurface separations. Our results show that on formation of well-organized layers between the surfaces, the parallel diffusion coefficients decrease considerably with respect to the bulk fluid. The effect of pressure on the parallel diffusion coefficients has also been studied. Better organized layers, and hence, lower diffusion coefficients are observed with increasing the pressure. More... »

PAGES

47-52

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s13738-013-0274-9

DOI

http://dx.doi.org/10.1007/s13738-013-0274-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1045489347


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Interdisciplinary Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Persian Gulf University", 
          "id": "https://www.grid.ac/institutes/grid.412491.b", 
          "name": [
            "Department of Chemistry College of Sciences, Persian Gulf University, 75168, Boushehr, Iran"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mehdipour", 
        "givenName": "Nargess", 
        "id": "sg:person.0712722573.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0712722573.26"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Persian Gulf University", 
          "id": "https://www.grid.ac/institutes/grid.412491.b", 
          "name": [
            "Department of Chemistry College of Sciences, Persian Gulf University, 75168, Boushehr, Iran"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mousavian", 
        "givenName": "Neda", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Persian Gulf University", 
          "id": "https://www.grid.ac/institutes/grid.412491.b", 
          "name": [
            "Department of Chemistry College of Sciences, Persian Gulf University, 75168, Boushehr, Iran"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Eslami", 
        "givenName": "Hossein", 
        "id": "sg:person.0700465067.86", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0700465067.86"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1002/jcc.20689", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009925472"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00018738600101851", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011606104"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00018738600101851", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011606104"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0021-9991(77)90121-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014025009"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0010-4655(93)90144-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028403532"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-04283-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048344375", 
          "https://doi.org/10.1007/978-3-662-04283-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-04283-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048344375", 
          "https://doi.org/10.1007/978-3-662-04283-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00268978200101411", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049992103"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ci050126l", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055402055"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ci050126l", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055402055"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja0441817", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055836154"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja0441817", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055836154"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3009844", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057892757"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3474951", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057957967"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.439489", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058017518"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.448118", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058026138"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.449375", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058027394"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.453240", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058031256"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.453665", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058031681"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.458823", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058036834"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.466377", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058044383"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.466865", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058044871"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.470685", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058049072"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.476114", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058062012"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.481430", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058079252"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.41.6830", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060481651"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.41.6830", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060481651"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.47.5603", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060566314"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.47.5603", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060566314"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.49.790", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060788056"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.49.790", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060788056"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.77.683", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060814570"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.77.683", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060814570"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.245.4923.1223", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062538320"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014-02", 
    "datePublishedReg": "2014-02-01", 
    "description": "A new molecular dynamics simulation technique for simulating fluids in confinement [H. Eslami, F. Mozaffari, J. Moghadasi, F. M\u00fcller-Plathe, J. Chem. Phys. 129 (2008) 194702] is employed to simulate the diffusion coefficient of nanoconfined Lennard-Jones fluid. The diffusing fluid is liquid Ar and the confining surfaces are solid Ar fcc (100) surfaces, which are kept frozen during the simulation. In this simulation just the fluid in confinement is simulated at a constant temperature and a constant parallel component of pressure, which is assumed to be equal to the bulk pressure. It is shown that the calculated parallel (to the surfaces) component of the diffusion coefficients depends on the distance between the surfaces (pore size) and shows oscillatory behavior with respect to the intersurface separations. Our results show that on formation of well-organized layers between the surfaces, the parallel diffusion coefficients decrease considerably with respect to the bulk fluid. The effect of pressure on the parallel diffusion coefficients has also been studied. Better organized layers, and hence, lower diffusion coefficients are observed with increasing the pressure.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s13738-013-0274-9", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1037017", 
        "issn": [
          "1735-207X", 
          "1735-2428"
        ], 
        "name": "Journal of the Iranian Chemical Society", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "11"
      }
    ], 
    "name": "Molecular dynamics simulation of the diffusion of nanoconfined fluids", 
    "pagination": "47-52", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "d8af44dc91b1853915f2cc0ceff87557d1153044433ad77bb6d7bad4efd6906d"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s13738-013-0274-9"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1045489347"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s13738-013-0274-9", 
      "https://app.dimensions.ai/details/publication/pub.1045489347"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T15:54", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8664_00000524.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs13738-013-0274-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s13738-013-0274-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s13738-013-0274-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s13738-013-0274-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s13738-013-0274-9'


 

This table displays all metadata directly associated to this object as RDF triples.

153 TRIPLES      21 PREDICATES      53 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s13738-013-0274-9 schema:about anzsrc-for:09
2 anzsrc-for:0915
3 schema:author N15310e759c88491fbda9c223c69e897d
4 schema:citation sg:pub.10.1007/978-3-662-04283-0
5 https://doi.org/10.1002/jcc.20689
6 https://doi.org/10.1016/0010-4655(93)90144-2
7 https://doi.org/10.1016/0021-9991(77)90121-8
8 https://doi.org/10.1021/ci050126l
9 https://doi.org/10.1021/ja0441817
10 https://doi.org/10.1063/1.3009844
11 https://doi.org/10.1063/1.3474951
12 https://doi.org/10.1063/1.439489
13 https://doi.org/10.1063/1.448118
14 https://doi.org/10.1063/1.449375
15 https://doi.org/10.1063/1.453240
16 https://doi.org/10.1063/1.453665
17 https://doi.org/10.1063/1.458823
18 https://doi.org/10.1063/1.466377
19 https://doi.org/10.1063/1.466865
20 https://doi.org/10.1063/1.470685
21 https://doi.org/10.1063/1.476114
22 https://doi.org/10.1063/1.481430
23 https://doi.org/10.1080/00018738600101851
24 https://doi.org/10.1080/00268978200101411
25 https://doi.org/10.1103/physreva.41.6830
26 https://doi.org/10.1103/physrevb.47.5603
27 https://doi.org/10.1103/physrevlett.49.790
28 https://doi.org/10.1103/physrevlett.77.683
29 https://doi.org/10.1126/science.245.4923.1223
30 schema:datePublished 2014-02
31 schema:datePublishedReg 2014-02-01
32 schema:description A new molecular dynamics simulation technique for simulating fluids in confinement [H. Eslami, F. Mozaffari, J. Moghadasi, F. Müller-Plathe, J. Chem. Phys. 129 (2008) 194702] is employed to simulate the diffusion coefficient of nanoconfined Lennard-Jones fluid. The diffusing fluid is liquid Ar and the confining surfaces are solid Ar fcc (100) surfaces, which are kept frozen during the simulation. In this simulation just the fluid in confinement is simulated at a constant temperature and a constant parallel component of pressure, which is assumed to be equal to the bulk pressure. It is shown that the calculated parallel (to the surfaces) component of the diffusion coefficients depends on the distance between the surfaces (pore size) and shows oscillatory behavior with respect to the intersurface separations. Our results show that on formation of well-organized layers between the surfaces, the parallel diffusion coefficients decrease considerably with respect to the bulk fluid. The effect of pressure on the parallel diffusion coefficients has also been studied. Better organized layers, and hence, lower diffusion coefficients are observed with increasing the pressure.
33 schema:genre research_article
34 schema:inLanguage en
35 schema:isAccessibleForFree false
36 schema:isPartOf N0e76bf217f6e4e15ba824e1d57bdb94e
37 N289c8395b97241ce96e69d0d5a304bc1
38 sg:journal.1037017
39 schema:name Molecular dynamics simulation of the diffusion of nanoconfined fluids
40 schema:pagination 47-52
41 schema:productId N56bdd323da30477182e0c1c2dd0cc7b8
42 N97e70c8b353d47078a6bc3b93e8e365c
43 Nd114e83c050c4bf7addbadc60b510925
44 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045489347
45 https://doi.org/10.1007/s13738-013-0274-9
46 schema:sdDatePublished 2019-04-10T15:54
47 schema:sdLicense https://scigraph.springernature.com/explorer/license/
48 schema:sdPublisher N11f571e941e9496da56954fb3e322564
49 schema:url http://link.springer.com/10.1007%2Fs13738-013-0274-9
50 sgo:license sg:explorer/license/
51 sgo:sdDataset articles
52 rdf:type schema:ScholarlyArticle
53 N05e3ecc99aaf426b81ac3716913b6bab rdf:first sg:person.0700465067.86
54 rdf:rest rdf:nil
55 N0e76bf217f6e4e15ba824e1d57bdb94e schema:volumeNumber 11
56 rdf:type schema:PublicationVolume
57 N11f571e941e9496da56954fb3e322564 schema:name Springer Nature - SN SciGraph project
58 rdf:type schema:Organization
59 N14a5a1c619674451b66b48d72e754674 rdf:first Nd90c30e05d384dc993c9d059cd0b580a
60 rdf:rest N05e3ecc99aaf426b81ac3716913b6bab
61 N15310e759c88491fbda9c223c69e897d rdf:first sg:person.0712722573.26
62 rdf:rest N14a5a1c619674451b66b48d72e754674
63 N289c8395b97241ce96e69d0d5a304bc1 schema:issueNumber 1
64 rdf:type schema:PublicationIssue
65 N56bdd323da30477182e0c1c2dd0cc7b8 schema:name dimensions_id
66 schema:value pub.1045489347
67 rdf:type schema:PropertyValue
68 N97e70c8b353d47078a6bc3b93e8e365c schema:name doi
69 schema:value 10.1007/s13738-013-0274-9
70 rdf:type schema:PropertyValue
71 Nd114e83c050c4bf7addbadc60b510925 schema:name readcube_id
72 schema:value d8af44dc91b1853915f2cc0ceff87557d1153044433ad77bb6d7bad4efd6906d
73 rdf:type schema:PropertyValue
74 Nd90c30e05d384dc993c9d059cd0b580a schema:affiliation https://www.grid.ac/institutes/grid.412491.b
75 schema:familyName Mousavian
76 schema:givenName Neda
77 rdf:type schema:Person
78 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
79 schema:name Engineering
80 rdf:type schema:DefinedTerm
81 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
82 schema:name Interdisciplinary Engineering
83 rdf:type schema:DefinedTerm
84 sg:journal.1037017 schema:issn 1735-207X
85 1735-2428
86 schema:name Journal of the Iranian Chemical Society
87 rdf:type schema:Periodical
88 sg:person.0700465067.86 schema:affiliation https://www.grid.ac/institutes/grid.412491.b
89 schema:familyName Eslami
90 schema:givenName Hossein
91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0700465067.86
92 rdf:type schema:Person
93 sg:person.0712722573.26 schema:affiliation https://www.grid.ac/institutes/grid.412491.b
94 schema:familyName Mehdipour
95 schema:givenName Nargess
96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0712722573.26
97 rdf:type schema:Person
98 sg:pub.10.1007/978-3-662-04283-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048344375
99 https://doi.org/10.1007/978-3-662-04283-0
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1002/jcc.20689 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009925472
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1016/0010-4655(93)90144-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028403532
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1016/0021-9991(77)90121-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014025009
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1021/ci050126l schema:sameAs https://app.dimensions.ai/details/publication/pub.1055402055
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1021/ja0441817 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055836154
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1063/1.3009844 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057892757
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1063/1.3474951 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057957967
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1063/1.439489 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058017518
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1063/1.448118 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058026138
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1063/1.449375 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058027394
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1063/1.453240 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058031256
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1063/1.453665 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058031681
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1063/1.458823 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058036834
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1063/1.466377 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058044383
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1063/1.466865 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058044871
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1063/1.470685 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058049072
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1063/1.476114 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058062012
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1063/1.481430 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058079252
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1080/00018738600101851 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011606104
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1080/00268978200101411 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049992103
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1103/physreva.41.6830 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060481651
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1103/physrevb.47.5603 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060566314
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1103/physrevlett.49.790 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060788056
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1103/physrevlett.77.683 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060814570
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1126/science.245.4923.1223 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062538320
150 rdf:type schema:CreativeWork
151 https://www.grid.ac/institutes/grid.412491.b schema:alternateName Persian Gulf University
152 schema:name Department of Chemistry College of Sciences, Persian Gulf University, 75168, Boushehr, Iran
153 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...