Generic multivariate model for color texture classification in RGB color space View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2015-09

AUTHORS

Ahmed Drissi El Maliani, Mohammed El Hassouni, Yannick Berthoumieu, Driss Aboutajdine

ABSTRACT

This paper presents a new method for modeling magnitudes of dual-tree complex wavelet coefficients, in the context of color texture classification. Based on the characterization of dependency between RGB color components, Gaussian copula associated with Generalized Gamma marginal function is proposed to design the multivariate generalized Gamma density (MGΓD) modeling. MGΓD has the advantages of genericity in terms of fitting over a variety of existing joint models. On the one hand, the generalized Gamma density function offers free-shape parameters to characterize a wide range of heavy-tailed densities, i.e., the genericity. On the other hand, the inter-component, inter-band dependency is captured by the Gaussian Copula which offers adapted flexibility. Moreover, this model leads to a closed form for the probabilistic similarity measure in terms of parameters, i.e., Kullback–Leibler divergence. By exploiting the separability between the copula and the marginal spaces, the closed form enables us to minimize the computational time needed to measure the discrepancy between two Multivariate Generalized Gamma densities in comparison to other models which imply using a Monte Carlo method characterized by an expensive time computing. For evaluating the performance of our proposal, a K-nearest neighbor (KNN) classifier is then used to test the classification accuracy. Experiments on different benchmarks using color texture databases are conducted to highlight the effectiveness of the proposed model associated to the Kullback–Leibler divergence. More... »

PAGES

217-231

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s13735-014-0071-y

DOI

http://dx.doi.org/10.1007/s13735-014-0071-y

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1035240129


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "L.i.M, FSDM, University of Sidi Mohammed Ben Abdellah, Fez, Morocco"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Drissi El Maliani", 
        "givenName": "Ahmed", 
        "id": "sg:person.013676545031.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013676545031.63"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Mohammed V University", 
          "id": "https://www.grid.ac/institutes/grid.31143.34", 
          "name": [
            "DESTEC, FLSHR, University of Mohammed V-Agdal, Rabat, Morocco"
          ], 
          "type": "Organization"
        }, 
        "familyName": "El Hassouni", 
        "givenName": "Mohammed", 
        "id": "sg:person.016676771760.64", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016676771760.64"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Laboratoire de l'Integration du Materiau au Systeme", 
          "id": "https://www.grid.ac/institutes/grid.462974.a", 
          "name": [
            "IPB, IMS, Groupe Signal, UMR 5218, Univ. Bordeaux, 33400, Talence, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Berthoumieu", 
        "givenName": "Yannick", 
        "id": "sg:person.010636166221.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010636166221.26"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Mohammed V University", 
          "id": "https://www.grid.ac/institutes/grid.31143.34", 
          "name": [
            "LRIT, Unit\u00e9 Associ\u00e9e au CNRST (URAC 29), Universit\u00e9 Mohammed V-Agdal, Rabat, Morocco"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Aboutajdine", 
        "givenName": "Driss", 
        "id": "sg:person.014641674655.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014641674655.23"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1017/cbo9780511615337.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000315017"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.patcog.2009.07.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007280615"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.patcog.2005.10.028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021629130"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-47977-5_9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045121416", 
          "https://doi.org/10.1007/3-540-47977-5_9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/83.982822", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061240430"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tbme.2006.877103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061526710"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tip.2009.2033400", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061642342"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tip.2011.2108663", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061642755"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tip.2014.2313232", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061643921"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tit.1967.1053964", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061646286"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/aoms/1177704481", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064400518"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icip.2009.5413656", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093368439"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icip.2008.4711718", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094255688"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icip.2010.5653932", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095302282"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icip.2008.4711909", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095563487"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/isvc.2010.5656257", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095602222"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icassp.2009.4959766", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095698500"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1201/b13150", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109727365"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-09", 
    "datePublishedReg": "2015-09-01", 
    "description": "This paper presents a new method for modeling magnitudes of dual-tree complex wavelet coefficients, in the context of color texture classification. Based on the characterization of dependency between RGB color components, Gaussian copula associated with Generalized Gamma marginal function is proposed to design the multivariate generalized Gamma density (MG\u0393D) modeling. MG\u0393D has the advantages of genericity in terms of fitting over a variety of existing joint models. On the one hand, the generalized Gamma density function offers free-shape parameters to characterize a wide range of heavy-tailed densities, i.e., the genericity. On the other hand, the inter-component, inter-band dependency is captured by the Gaussian Copula which offers adapted flexibility. Moreover, this model leads to a closed form for the probabilistic similarity measure in terms of parameters, i.e., Kullback\u2013Leibler divergence. By exploiting the separability between the copula and the marginal spaces, the closed form enables us to minimize the computational time needed to measure the discrepancy between two Multivariate Generalized Gamma densities in comparison to other models which imply using a Monte Carlo method characterized by an expensive time computing. For evaluating the performance of our proposal, a K-nearest neighbor (KNN) classifier is then used to test the classification accuracy. Experiments on different benchmarks using color texture databases are conducted to highlight the effectiveness of the proposed model associated to the Kullback\u2013Leibler divergence.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s13735-014-0071-y", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1047909", 
        "issn": [
          "2192-6611", 
          "2192-662X"
        ], 
        "name": "International Journal of Multimedia Information Retrieval", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "4"
      }
    ], 
    "name": "Generic multivariate model for color texture classification in RGB color space", 
    "pagination": "217-231", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "a7de15d318e75522a7fe00197eac9bc00e32f541fdcd37aa7818f92cbf4862fc"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s13735-014-0071-y"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1035240129"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s13735-014-0071-y", 
      "https://app.dimensions.ai/details/publication/pub.1035240129"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T15:13", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8663_00000590.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs13735-014-0071-y"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s13735-014-0071-y'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s13735-014-0071-y'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s13735-014-0071-y'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s13735-014-0071-y'


 

This table displays all metadata directly associated to this object as RDF triples.

143 TRIPLES      21 PREDICATES      45 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s13735-014-0071-y schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Nd12023087ef7419ab28337e18ef6e587
4 schema:citation sg:pub.10.1007/3-540-47977-5_9
5 https://doi.org/10.1016/j.patcog.2005.10.028
6 https://doi.org/10.1016/j.patcog.2009.07.008
7 https://doi.org/10.1017/cbo9780511615337.008
8 https://doi.org/10.1109/83.982822
9 https://doi.org/10.1109/icassp.2009.4959766
10 https://doi.org/10.1109/icip.2008.4711718
11 https://doi.org/10.1109/icip.2008.4711909
12 https://doi.org/10.1109/icip.2009.5413656
13 https://doi.org/10.1109/icip.2010.5653932
14 https://doi.org/10.1109/isvc.2010.5656257
15 https://doi.org/10.1109/tbme.2006.877103
16 https://doi.org/10.1109/tip.2009.2033400
17 https://doi.org/10.1109/tip.2011.2108663
18 https://doi.org/10.1109/tip.2014.2313232
19 https://doi.org/10.1109/tit.1967.1053964
20 https://doi.org/10.1201/b13150
21 https://doi.org/10.1214/aoms/1177704481
22 schema:datePublished 2015-09
23 schema:datePublishedReg 2015-09-01
24 schema:description This paper presents a new method for modeling magnitudes of dual-tree complex wavelet coefficients, in the context of color texture classification. Based on the characterization of dependency between RGB color components, Gaussian copula associated with Generalized Gamma marginal function is proposed to design the multivariate generalized Gamma density (MGΓD) modeling. MGΓD has the advantages of genericity in terms of fitting over a variety of existing joint models. On the one hand, the generalized Gamma density function offers free-shape parameters to characterize a wide range of heavy-tailed densities, i.e., the genericity. On the other hand, the inter-component, inter-band dependency is captured by the Gaussian Copula which offers adapted flexibility. Moreover, this model leads to a closed form for the probabilistic similarity measure in terms of parameters, i.e., Kullback–Leibler divergence. By exploiting the separability between the copula and the marginal spaces, the closed form enables us to minimize the computational time needed to measure the discrepancy between two Multivariate Generalized Gamma densities in comparison to other models which imply using a Monte Carlo method characterized by an expensive time computing. For evaluating the performance of our proposal, a K-nearest neighbor (KNN) classifier is then used to test the classification accuracy. Experiments on different benchmarks using color texture databases are conducted to highlight the effectiveness of the proposed model associated to the Kullback–Leibler divergence.
25 schema:genre research_article
26 schema:inLanguage en
27 schema:isAccessibleForFree false
28 schema:isPartOf N29b4951d5fc04cd284b08694d7e47f0f
29 N7ab12ec6fa4c42aea72b7fea127ec049
30 sg:journal.1047909
31 schema:name Generic multivariate model for color texture classification in RGB color space
32 schema:pagination 217-231
33 schema:productId N13fc6c31529b4ad3963e0fa0c01be9c5
34 N323d4811c0e24b77b27de0a009493da3
35 N3423d390e411467a8f92a8b81a0a1415
36 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035240129
37 https://doi.org/10.1007/s13735-014-0071-y
38 schema:sdDatePublished 2019-04-10T15:13
39 schema:sdLicense https://scigraph.springernature.com/explorer/license/
40 schema:sdPublisher N2b46990dc8004c1e803d3e3ad910d521
41 schema:url http://link.springer.com/10.1007%2Fs13735-014-0071-y
42 sgo:license sg:explorer/license/
43 sgo:sdDataset articles
44 rdf:type schema:ScholarlyArticle
45 N0920fdccfe724f8086e3d9bef824d801 rdf:first sg:person.016676771760.64
46 rdf:rest Nf5f0800ee7744d9ea0bcb10fd88e0d9c
47 N13fc6c31529b4ad3963e0fa0c01be9c5 schema:name readcube_id
48 schema:value a7de15d318e75522a7fe00197eac9bc00e32f541fdcd37aa7818f92cbf4862fc
49 rdf:type schema:PropertyValue
50 N29b4951d5fc04cd284b08694d7e47f0f schema:issueNumber 3
51 rdf:type schema:PublicationIssue
52 N2b46990dc8004c1e803d3e3ad910d521 schema:name Springer Nature - SN SciGraph project
53 rdf:type schema:Organization
54 N323d4811c0e24b77b27de0a009493da3 schema:name doi
55 schema:value 10.1007/s13735-014-0071-y
56 rdf:type schema:PropertyValue
57 N3423d390e411467a8f92a8b81a0a1415 schema:name dimensions_id
58 schema:value pub.1035240129
59 rdf:type schema:PropertyValue
60 N7ab12ec6fa4c42aea72b7fea127ec049 schema:volumeNumber 4
61 rdf:type schema:PublicationVolume
62 Na8ae213b813d42eaa78e7b990147fdc6 rdf:first sg:person.014641674655.23
63 rdf:rest rdf:nil
64 Nd12023087ef7419ab28337e18ef6e587 rdf:first sg:person.013676545031.63
65 rdf:rest N0920fdccfe724f8086e3d9bef824d801
66 Ne8d98f32550f412c8dd7c2c1d1464323 schema:name L.i.M, FSDM, University of Sidi Mohammed Ben Abdellah, Fez, Morocco
67 rdf:type schema:Organization
68 Nf5f0800ee7744d9ea0bcb10fd88e0d9c rdf:first sg:person.010636166221.26
69 rdf:rest Na8ae213b813d42eaa78e7b990147fdc6
70 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
71 schema:name Information and Computing Sciences
72 rdf:type schema:DefinedTerm
73 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
74 schema:name Artificial Intelligence and Image Processing
75 rdf:type schema:DefinedTerm
76 sg:journal.1047909 schema:issn 2192-6611
77 2192-662X
78 schema:name International Journal of Multimedia Information Retrieval
79 rdf:type schema:Periodical
80 sg:person.010636166221.26 schema:affiliation https://www.grid.ac/institutes/grid.462974.a
81 schema:familyName Berthoumieu
82 schema:givenName Yannick
83 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010636166221.26
84 rdf:type schema:Person
85 sg:person.013676545031.63 schema:affiliation Ne8d98f32550f412c8dd7c2c1d1464323
86 schema:familyName Drissi El Maliani
87 schema:givenName Ahmed
88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013676545031.63
89 rdf:type schema:Person
90 sg:person.014641674655.23 schema:affiliation https://www.grid.ac/institutes/grid.31143.34
91 schema:familyName Aboutajdine
92 schema:givenName Driss
93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014641674655.23
94 rdf:type schema:Person
95 sg:person.016676771760.64 schema:affiliation https://www.grid.ac/institutes/grid.31143.34
96 schema:familyName El Hassouni
97 schema:givenName Mohammed
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016676771760.64
99 rdf:type schema:Person
100 sg:pub.10.1007/3-540-47977-5_9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045121416
101 https://doi.org/10.1007/3-540-47977-5_9
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1016/j.patcog.2005.10.028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021629130
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1016/j.patcog.2009.07.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007280615
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1017/cbo9780511615337.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000315017
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1109/83.982822 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061240430
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1109/icassp.2009.4959766 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095698500
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1109/icip.2008.4711718 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094255688
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1109/icip.2008.4711909 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095563487
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1109/icip.2009.5413656 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093368439
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1109/icip.2010.5653932 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095302282
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1109/isvc.2010.5656257 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095602222
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1109/tbme.2006.877103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061526710
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1109/tip.2009.2033400 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061642342
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1109/tip.2011.2108663 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061642755
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1109/tip.2014.2313232 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061643921
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1109/tit.1967.1053964 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061646286
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1201/b13150 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109727365
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1214/aoms/1177704481 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064400518
136 rdf:type schema:CreativeWork
137 https://www.grid.ac/institutes/grid.31143.34 schema:alternateName Mohammed V University
138 schema:name DESTEC, FLSHR, University of Mohammed V-Agdal, Rabat, Morocco
139 LRIT, Unité Associée au CNRST (URAC 29), Université Mohammed V-Agdal, Rabat, Morocco
140 rdf:type schema:Organization
141 https://www.grid.ac/institutes/grid.462974.a schema:alternateName Laboratoire de l'Integration du Materiau au Systeme
142 schema:name IPB, IMS, Groupe Signal, UMR 5218, Univ. Bordeaux, 33400, Talence, France
143 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...