A multi-scale three-dimensional finite element analysis of polymeric rubber foam reinforced by carbon nanotubes under tensile loads View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-02

AUTHORS

Alireza Shojaei Dindarloo, Mohammad Karrabi, Mir Hamid Reza Ghoreishy

ABSTRACT

A multi-scale FEM analysis was set up using two different unit cells to estimate the properties of a nanoparticle-reinforced rubber foam from the base material. Rubber foam was made up of EPDM rubber and reinforced by multiwall carbon nanotubes. This analysis was performed in two stages. In the first stage, the mechanical behavior of polymeric nanocomposite was predicted under uniaxial tension using the unit cell type I; in the second stage, the overall foam behavior was predicted by implementing the results of the first stage in unit cell type II as a constitutive material, with both cell types being in different dimensional scales. The polymeric material was assumed as an incompressible media and Ogden hyperelastic model was used as a material model. Both simulation stages incorporated unit cells as representative volume element and periodic boundary conditions. Polymeric material parameters for Ogden hyperelastic model were calculated using tensile testing of vulcanized pure EPDM. To validate the model, numerical analysis results were compared to experimental tensile tests of nanoparticle-reinforced foam, which was prepared with similar density and nanoparticle content as in the simulation. The foam porosity size and content of carbon nanotubes were adjustable in this study using unit cell parameters. More... »

PAGES

1-10

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s13726-018-00685-0

DOI

http://dx.doi.org/10.1007/s13726-018-00685-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1111601945


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Iran Polymer and Petrochemical Institute", 
          "id": "https://www.grid.ac/institutes/grid.419412.b", 
          "name": [
            "Iran Polymer and Petrochemical Institute, P.O. Box 14965/115, Tehran, Iran"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shojaei Dindarloo", 
        "givenName": "Alireza", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Iran Polymer and Petrochemical Institute", 
          "id": "https://www.grid.ac/institutes/grid.419412.b", 
          "name": [
            "Iran Polymer and Petrochemical Institute, P.O. Box 14965/115, Tehran, Iran"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Karrabi", 
        "givenName": "Mohammad", 
        "id": "sg:person.014313134275.66", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014313134275.66"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Iran Polymer and Petrochemical Institute", 
          "id": "https://www.grid.ac/institutes/grid.419412.b", 
          "name": [
            "Iran Polymer and Petrochemical Institute, P.O. Box 14965/115, Tehran, Iran"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ghoreishy", 
        "givenName": "Mir Hamid Reza", 
        "id": "sg:person.010032204143.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010032204143.51"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.commatsci.2010.08.036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000578883"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/pen.21224", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001322081"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.mechmat.2017.01.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001781644"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.mechmat.2014.07.021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004606998"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmps.2003.09.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007180958"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmps.2003.09.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007180958"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s13726-016-0477-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008617735", 
          "https://doi.org/10.1007/s13726-016-0477-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s13726-016-0477-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008617735", 
          "https://doi.org/10.1007/s13726-016-0477-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.pmatsci.2010.06.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009333165"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcp.2016.10.070", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009394875"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcp.2016.10.070", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009394875"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcp.2016.10.070", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009394875"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcp.2016.10.070", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009394875"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.polymer.2010.03.042", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011528235"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-02276-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011744507", 
          "https://doi.org/10.1007/978-3-662-02276-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-02276-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011744507", 
          "https://doi.org/10.1007/978-3-662-02276-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eurpolymj.2013.01.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016279510"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.mechrescom.2012.10.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016319154"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1359-6454(97)00421-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018969962"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmps.2012.10.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022221244"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/pj.2012.2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023694895", 
          "https://doi.org/10.1038/pj.2012.2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compscitech.2005.06.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024281649"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1359-6454(00)00282-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028595664"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compositesa.2014.07.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028950891"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00466-004-0593-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029570567", 
          "https://doi.org/10.1007/s00466-004-0593-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.matdes.2012.12.050", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030228389"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2514/1.j050022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038896338"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s13726-012-0043-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045734562", 
          "https://doi.org/10.1007/s13726-012-0043-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.matdes.2010.11.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046027679"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmst.2015.08.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050237518"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.supflu.2009.09.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052089131"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ie102438p", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055603407"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ie102438p", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055603407"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3144/expresspolymlett.2010.11", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071053411"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.polymer.2017.02.057", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083910809"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/14658011.2018.1426215", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100587746"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/app.46322", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101032532"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compstruct.2018.02.095", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101262297"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/026248931703600301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1106712900"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/026248931703600301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1106712900"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-02", 
    "datePublishedReg": "2019-02-01", 
    "description": "A multi-scale FEM analysis was set up using two different unit cells to estimate the properties of a nanoparticle-reinforced rubber foam from the base material. Rubber foam was made up of EPDM rubber and reinforced by multiwall carbon nanotubes. This analysis was performed in two stages. In the first stage, the mechanical behavior of polymeric nanocomposite was predicted under uniaxial tension using the unit cell type I; in the second stage, the overall foam behavior was predicted by implementing the results of the first stage in unit cell type II as a constitutive material, with both cell types being in different dimensional scales. The polymeric material was assumed as an incompressible media and Ogden hyperelastic model was used as a material model. Both simulation stages incorporated unit cells as representative volume element and periodic boundary conditions. Polymeric material parameters for Ogden hyperelastic model were calculated using tensile testing of vulcanized pure EPDM. To validate the model, numerical analysis results were compared to experimental tensile tests of nanoparticle-reinforced foam, which was prepared with similar density and nanoparticle content as in the simulation. The foam porosity size and content of carbon nanotubes were adjustable in this study using unit cell parameters.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s13726-018-00685-0", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136545", 
        "issn": [
          "1026-1265", 
          "1735-5265"
        ], 
        "name": "Iranian Polymer Journal", 
        "type": "Periodical"
      }
    ], 
    "name": "A multi-scale three-dimensional finite element analysis of polymeric rubber foam reinforced by carbon nanotubes under tensile loads", 
    "pagination": "1-10", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "3824aef1581b6bb367f30e0ed9af42dc26eeddf4b240a978079389f1e5736a3c"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s13726-018-00685-0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1111601945"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s13726-018-00685-0", 
      "https://app.dimensions.ai/details/publication/pub.1111601945"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T08:57", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000325_0000000325/records_100812_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs13726-018-00685-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s13726-018-00685-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s13726-018-00685-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s13726-018-00685-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s13726-018-00685-0'


 

This table displays all metadata directly associated to this object as RDF triples.

169 TRIPLES      21 PREDICATES      57 URIs      17 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s13726-018-00685-0 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N5889b45ac88041f9890c54651a4a9296
4 schema:citation sg:pub.10.1007/978-3-662-02276-4
5 sg:pub.10.1007/s00466-004-0593-y
6 sg:pub.10.1007/s13726-012-0043-0
7 sg:pub.10.1007/s13726-016-0477-x
8 sg:pub.10.1038/pj.2012.2
9 https://doi.org/10.1002/app.46322
10 https://doi.org/10.1002/pen.21224
11 https://doi.org/10.1016/j.commatsci.2010.08.036
12 https://doi.org/10.1016/j.compositesa.2014.07.014
13 https://doi.org/10.1016/j.compscitech.2005.06.016
14 https://doi.org/10.1016/j.compstruct.2018.02.095
15 https://doi.org/10.1016/j.eurpolymj.2013.01.005
16 https://doi.org/10.1016/j.jcp.2016.10.070
17 https://doi.org/10.1016/j.jmps.2003.09.015
18 https://doi.org/10.1016/j.jmps.2012.10.007
19 https://doi.org/10.1016/j.jmst.2015.08.010
20 https://doi.org/10.1016/j.matdes.2010.11.010
21 https://doi.org/10.1016/j.matdes.2012.12.050
22 https://doi.org/10.1016/j.mechmat.2014.07.021
23 https://doi.org/10.1016/j.mechmat.2017.01.001
24 https://doi.org/10.1016/j.mechrescom.2012.10.007
25 https://doi.org/10.1016/j.pmatsci.2010.06.001
26 https://doi.org/10.1016/j.polymer.2010.03.042
27 https://doi.org/10.1016/j.polymer.2017.02.057
28 https://doi.org/10.1016/j.supflu.2009.09.007
29 https://doi.org/10.1016/s1359-6454(00)00282-2
30 https://doi.org/10.1016/s1359-6454(97)00421-7
31 https://doi.org/10.1021/ie102438p
32 https://doi.org/10.1080/14658011.2018.1426215
33 https://doi.org/10.1177/026248931703600301
34 https://doi.org/10.2514/1.j050022
35 https://doi.org/10.3144/expresspolymlett.2010.11
36 schema:datePublished 2019-02
37 schema:datePublishedReg 2019-02-01
38 schema:description A multi-scale FEM analysis was set up using two different unit cells to estimate the properties of a nanoparticle-reinforced rubber foam from the base material. Rubber foam was made up of EPDM rubber and reinforced by multiwall carbon nanotubes. This analysis was performed in two stages. In the first stage, the mechanical behavior of polymeric nanocomposite was predicted under uniaxial tension using the unit cell type I; in the second stage, the overall foam behavior was predicted by implementing the results of the first stage in unit cell type II as a constitutive material, with both cell types being in different dimensional scales. The polymeric material was assumed as an incompressible media and Ogden hyperelastic model was used as a material model. Both simulation stages incorporated unit cells as representative volume element and periodic boundary conditions. Polymeric material parameters for Ogden hyperelastic model were calculated using tensile testing of vulcanized pure EPDM. To validate the model, numerical analysis results were compared to experimental tensile tests of nanoparticle-reinforced foam, which was prepared with similar density and nanoparticle content as in the simulation. The foam porosity size and content of carbon nanotubes were adjustable in this study using unit cell parameters.
39 schema:genre research_article
40 schema:inLanguage en
41 schema:isAccessibleForFree false
42 schema:isPartOf sg:journal.1136545
43 schema:name A multi-scale three-dimensional finite element analysis of polymeric rubber foam reinforced by carbon nanotubes under tensile loads
44 schema:pagination 1-10
45 schema:productId N21994c32da874c6980787fa45218a736
46 Ncb320c3300b442208ca282b2bc544049
47 Nf903653eb2d54884a98079ad1a7b3c26
48 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111601945
49 https://doi.org/10.1007/s13726-018-00685-0
50 schema:sdDatePublished 2019-04-11T08:57
51 schema:sdLicense https://scigraph.springernature.com/explorer/license/
52 schema:sdPublisher Nda49ed25e54a45268606bf36e799cad1
53 schema:url https://link.springer.com/10.1007%2Fs13726-018-00685-0
54 sgo:license sg:explorer/license/
55 sgo:sdDataset articles
56 rdf:type schema:ScholarlyArticle
57 N1de19a5ed1474ecca60bd6582a2c2320 rdf:first sg:person.010032204143.51
58 rdf:rest rdf:nil
59 N21994c32da874c6980787fa45218a736 schema:name readcube_id
60 schema:value 3824aef1581b6bb367f30e0ed9af42dc26eeddf4b240a978079389f1e5736a3c
61 rdf:type schema:PropertyValue
62 N5889b45ac88041f9890c54651a4a9296 rdf:first Nae0489e53fd34812aa2f6a81625f7d88
63 rdf:rest Nc6d1c65233be49a89a74d3573767120a
64 Nae0489e53fd34812aa2f6a81625f7d88 schema:affiliation https://www.grid.ac/institutes/grid.419412.b
65 schema:familyName Shojaei Dindarloo
66 schema:givenName Alireza
67 rdf:type schema:Person
68 Nc6d1c65233be49a89a74d3573767120a rdf:first sg:person.014313134275.66
69 rdf:rest N1de19a5ed1474ecca60bd6582a2c2320
70 Ncb320c3300b442208ca282b2bc544049 schema:name doi
71 schema:value 10.1007/s13726-018-00685-0
72 rdf:type schema:PropertyValue
73 Nda49ed25e54a45268606bf36e799cad1 schema:name Springer Nature - SN SciGraph project
74 rdf:type schema:Organization
75 Nf903653eb2d54884a98079ad1a7b3c26 schema:name dimensions_id
76 schema:value pub.1111601945
77 rdf:type schema:PropertyValue
78 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
79 schema:name Engineering
80 rdf:type schema:DefinedTerm
81 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
82 schema:name Materials Engineering
83 rdf:type schema:DefinedTerm
84 sg:journal.1136545 schema:issn 1026-1265
85 1735-5265
86 schema:name Iranian Polymer Journal
87 rdf:type schema:Periodical
88 sg:person.010032204143.51 schema:affiliation https://www.grid.ac/institutes/grid.419412.b
89 schema:familyName Ghoreishy
90 schema:givenName Mir Hamid Reza
91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010032204143.51
92 rdf:type schema:Person
93 sg:person.014313134275.66 schema:affiliation https://www.grid.ac/institutes/grid.419412.b
94 schema:familyName Karrabi
95 schema:givenName Mohammad
96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014313134275.66
97 rdf:type schema:Person
98 sg:pub.10.1007/978-3-662-02276-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011744507
99 https://doi.org/10.1007/978-3-662-02276-4
100 rdf:type schema:CreativeWork
101 sg:pub.10.1007/s00466-004-0593-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1029570567
102 https://doi.org/10.1007/s00466-004-0593-y
103 rdf:type schema:CreativeWork
104 sg:pub.10.1007/s13726-012-0043-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045734562
105 https://doi.org/10.1007/s13726-012-0043-0
106 rdf:type schema:CreativeWork
107 sg:pub.10.1007/s13726-016-0477-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1008617735
108 https://doi.org/10.1007/s13726-016-0477-x
109 rdf:type schema:CreativeWork
110 sg:pub.10.1038/pj.2012.2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023694895
111 https://doi.org/10.1038/pj.2012.2
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1002/app.46322 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101032532
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1002/pen.21224 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001322081
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1016/j.commatsci.2010.08.036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000578883
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1016/j.compositesa.2014.07.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028950891
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1016/j.compscitech.2005.06.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024281649
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1016/j.compstruct.2018.02.095 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101262297
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1016/j.eurpolymj.2013.01.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016279510
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1016/j.jcp.2016.10.070 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009394875
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1016/j.jmps.2003.09.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007180958
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1016/j.jmps.2012.10.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022221244
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1016/j.jmst.2015.08.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050237518
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1016/j.matdes.2010.11.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046027679
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1016/j.matdes.2012.12.050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030228389
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1016/j.mechmat.2014.07.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004606998
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1016/j.mechmat.2017.01.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001781644
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1016/j.mechrescom.2012.10.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016319154
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1016/j.pmatsci.2010.06.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009333165
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1016/j.polymer.2010.03.042 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011528235
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1016/j.polymer.2017.02.057 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083910809
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1016/j.supflu.2009.09.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052089131
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1016/s1359-6454(00)00282-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028595664
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1016/s1359-6454(97)00421-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018969962
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1021/ie102438p schema:sameAs https://app.dimensions.ai/details/publication/pub.1055603407
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1080/14658011.2018.1426215 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100587746
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1177/026248931703600301 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106712900
162 rdf:type schema:CreativeWork
163 https://doi.org/10.2514/1.j050022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038896338
164 rdf:type schema:CreativeWork
165 https://doi.org/10.3144/expresspolymlett.2010.11 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071053411
166 rdf:type schema:CreativeWork
167 https://www.grid.ac/institutes/grid.419412.b schema:alternateName Iran Polymer and Petrochemical Institute
168 schema:name Iran Polymer and Petrochemical Institute, P.O. Box 14965/115, Tehran, Iran
169 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...