The stochastic discrete berth allocation problem View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-07-02

AUTHORS

Xavier Schepler, Nabil Absi, Dominique Feillet, Eric Sanlaville

ABSTRACT

This paper deals with the discrete berth allocation problem with stochastic arrival times of vessels. The problem is to assign incoming vessels to a finite set of berthing points (berths) and to schedule them. The major objective is to minimize the expected total turnaround time of the vessels. We develop several new proactive, reactive and proactive/reactive approaches to this problem. Numerical experiments enable to compare these approaches. They show the impact of using full stochastic information instead of using mean values in a deterministic setting. The proactive/reactive approach, based on iterated tabu search and stochastic dynamic programming, provides good results when uncertainties on arrival times remain limited, while requiring only a few minutes of computing time on average. For larger levels of uncertainty, the proposed pure reactive approach clearly outperforms the others. More... »

PAGES

1-34

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s13676-018-0128-9

DOI

http://dx.doi.org/10.1007/s13676-018-0128-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1105265762


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Angers", 
          "id": "https://www.grid.ac/institutes/grid.7252.2", 
          "name": [
            "LERIA, Universit\u00e9 d\u2019Angers, 49000, Angers, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schepler", 
        "givenName": "Xavier", 
        "id": "sg:person.013131424271.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013131424271.32"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Ecole des Mines de Saint-Etienne and LIMOS, UMR CNRS 6158, CMP Georges Charpak, 13541, Gardanne, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Absi", 
        "givenName": "Nabil", 
        "id": "sg:person.014404475350.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014404475350.55"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Ecole des Mines de Saint-Etienne and LIMOS, UMR CNRS 6158, CMP Georges Charpak, 13541, Gardanne, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Feillet", 
        "givenName": "Dominique", 
        "id": "sg:person.012540730263.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012540730263.12"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Universit\u00e9 de Caen Basse-Normandie", 
          "id": "https://www.grid.ac/institutes/grid.412043.0", 
          "name": [
            "Normandie Univ, UNIHAVRE, LITIS, 76600, Le Havre, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sanlaville", 
        "givenName": "Eric", 
        "id": "sg:person.012106122533.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012106122533.01"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.ejor.2011.01.021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003363534"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejor.2009.05.031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004785026"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1057/palgrave.mel.9100148", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010590188", 
          "https://doi.org/10.1057/palgrave.mel.9100148"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00291-006-0036-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010715081", 
          "https://doi.org/10.1007/s00291-006-0036-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00291-006-0036-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010715081", 
          "https://doi.org/10.1007/s00291-006-0036-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1874-8651(09)60001-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011735666"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.engappai.2012.06.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020183752"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-26580-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024335942", 
          "https://doi.org/10.1007/978-3-319-26580-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-26580-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024335942", 
          "https://doi.org/10.1007/978-3-319-26580-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-26580-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024335942", 
          "https://doi.org/10.1007/978-3-319-26580-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0166-218x(92)90255-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030317560"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10696-013-9178-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031687624", 
          "https://doi.org/10.1007/s10696-013-9178-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10951-016-0480-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033850030", 
          "https://doi.org/10.1007/s10951-016-0480-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejor.2014.12.030", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037641154"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0167-5060(08)70743-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038309764"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejor.2015.05.079", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042132442"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejor.2016.04.029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042175121"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10472-014-9444-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042981123", 
          "https://doi.org/10.1007/s10472-014-9444-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.trb.2009.07.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043411506"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1057/palgrave.mel.9100182", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043856360", 
          "https://doi.org/10.1057/palgrave.mel.9100182"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0191-2615(99)00057-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046819274"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1047983038", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-2620-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047983038", 
          "https://doi.org/10.1007/978-1-4757-2620-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-2620-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047983038", 
          "https://doi.org/10.1007/978-1-4757-2620-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tre.2010.11.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050052856"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejor.2010.07.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050990210"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10479-010-0820-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052280639", 
          "https://doi.org/10.1007/s10479-010-0820-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/s0097539796305778", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062880121"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1287/opre.31.3.559", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064729431"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1287/trsc.1050.0120", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064734157"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-0-387-75240-2_4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086156329", 
          "https://doi.org/10.1007/978-0-387-75240-2_4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-0-387-75240-2_4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086156329", 
          "https://doi.org/10.1007/978-0-387-75240-2_4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/wcica.2006.1714503", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094198262"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/9780470611432", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109507188"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1109507188", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-07-02", 
    "datePublishedReg": "2018-07-02", 
    "description": "This paper deals with the discrete berth allocation problem with stochastic arrival times of vessels. The problem is to assign incoming vessels to a finite set of berthing points (berths) and to schedule them. The major objective is to minimize the expected total turnaround time of the vessels. We develop several new proactive, reactive and proactive/reactive approaches to this problem. Numerical experiments enable to compare these approaches. They show the impact of using full stochastic information instead of using mean values in a deterministic setting. The proactive/reactive approach, based on iterated tabu search and stochastic dynamic programming, provides good results when uncertainties on arrival times remain limited, while requiring only a few minutes of computing time on average. For larger levels of uncertainty, the proposed pure reactive approach clearly outperforms the others.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s13676-018-0128-9", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136810", 
        "issn": [
          "2192-4376", 
          "2192-4384"
        ], 
        "name": "EURO Journal on Transportation and Logistics", 
        "type": "Periodical"
      }
    ], 
    "name": "The stochastic discrete berth allocation problem", 
    "pagination": "1-34", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "9f20cc90faefe66d0b9de64a9f3c8a65633456ff0ab0f9cc4f782bdac3cc6411"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s13676-018-0128-9"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1105265762"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s13676-018-0128-9", 
      "https://app.dimensions.ai/details/publication/pub.1105265762"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:41", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000363_0000000363/records_70053_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs13676-018-0128-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s13676-018-0128-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s13676-018-0128-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s13676-018-0128-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s13676-018-0128-9'


 

This table displays all metadata directly associated to this object as RDF triples.

181 TRIPLES      21 PREDICATES      54 URIs      16 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s13676-018-0128-9 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author Nb5905395a20641ca8e0dff9d653fb501
4 schema:citation sg:pub.10.1007/978-0-387-75240-2_4
5 sg:pub.10.1007/978-1-4757-2620-6
6 sg:pub.10.1007/978-3-319-26580-3
7 sg:pub.10.1007/s00291-006-0036-5
8 sg:pub.10.1007/s10472-014-9444-4
9 sg:pub.10.1007/s10479-010-0820-0
10 sg:pub.10.1007/s10696-013-9178-3
11 sg:pub.10.1007/s10951-016-0480-2
12 sg:pub.10.1057/palgrave.mel.9100148
13 sg:pub.10.1057/palgrave.mel.9100182
14 https://app.dimensions.ai/details/publication/pub.1047983038
15 https://app.dimensions.ai/details/publication/pub.1109507188
16 https://doi.org/10.1002/9780470611432
17 https://doi.org/10.1016/0166-218x(92)90255-9
18 https://doi.org/10.1016/j.ejor.2009.05.031
19 https://doi.org/10.1016/j.ejor.2010.07.018
20 https://doi.org/10.1016/j.ejor.2011.01.021
21 https://doi.org/10.1016/j.ejor.2014.12.030
22 https://doi.org/10.1016/j.ejor.2015.05.079
23 https://doi.org/10.1016/j.ejor.2016.04.029
24 https://doi.org/10.1016/j.engappai.2012.06.001
25 https://doi.org/10.1016/j.trb.2009.07.003
26 https://doi.org/10.1016/j.tre.2010.11.016
27 https://doi.org/10.1016/s0167-5060(08)70743-x
28 https://doi.org/10.1016/s0191-2615(99)00057-0
29 https://doi.org/10.1016/s1874-8651(09)60001-6
30 https://doi.org/10.1109/wcica.2006.1714503
31 https://doi.org/10.1137/s0097539796305778
32 https://doi.org/10.1287/opre.31.3.559
33 https://doi.org/10.1287/trsc.1050.0120
34 schema:datePublished 2018-07-02
35 schema:datePublishedReg 2018-07-02
36 schema:description This paper deals with the discrete berth allocation problem with stochastic arrival times of vessels. The problem is to assign incoming vessels to a finite set of berthing points (berths) and to schedule them. The major objective is to minimize the expected total turnaround time of the vessels. We develop several new proactive, reactive and proactive/reactive approaches to this problem. Numerical experiments enable to compare these approaches. They show the impact of using full stochastic information instead of using mean values in a deterministic setting. The proactive/reactive approach, based on iterated tabu search and stochastic dynamic programming, provides good results when uncertainties on arrival times remain limited, while requiring only a few minutes of computing time on average. For larger levels of uncertainty, the proposed pure reactive approach clearly outperforms the others.
37 schema:genre research_article
38 schema:inLanguage en
39 schema:isAccessibleForFree false
40 schema:isPartOf sg:journal.1136810
41 schema:name The stochastic discrete berth allocation problem
42 schema:pagination 1-34
43 schema:productId N74f4a267d59e4bc188bd60321548bb32
44 N85d03072803c4a909604359e66f3d994
45 Nce159c177716420788f22f02f6a5a96c
46 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105265762
47 https://doi.org/10.1007/s13676-018-0128-9
48 schema:sdDatePublished 2019-04-11T12:41
49 schema:sdLicense https://scigraph.springernature.com/explorer/license/
50 schema:sdPublisher N8498c5c449e04136af4b222de7778441
51 schema:url https://link.springer.com/10.1007%2Fs13676-018-0128-9
52 sgo:license sg:explorer/license/
53 sgo:sdDataset articles
54 rdf:type schema:ScholarlyArticle
55 N1496025dbe474645b63d4af958ff970c rdf:first sg:person.012540730263.12
56 rdf:rest N22de9c6fa493405c80b5b17719ca8069
57 N1fee1965f82642e3a357325aafbddda0 rdf:first sg:person.014404475350.55
58 rdf:rest N1496025dbe474645b63d4af958ff970c
59 N22de9c6fa493405c80b5b17719ca8069 rdf:first sg:person.012106122533.01
60 rdf:rest rdf:nil
61 N6335f9d7b2a94536bda72e8d5aea7824 schema:name Ecole des Mines de Saint-Etienne and LIMOS, UMR CNRS 6158, CMP Georges Charpak, 13541, Gardanne, France
62 rdf:type schema:Organization
63 N74f4a267d59e4bc188bd60321548bb32 schema:name readcube_id
64 schema:value 9f20cc90faefe66d0b9de64a9f3c8a65633456ff0ab0f9cc4f782bdac3cc6411
65 rdf:type schema:PropertyValue
66 N8498c5c449e04136af4b222de7778441 schema:name Springer Nature - SN SciGraph project
67 rdf:type schema:Organization
68 N85d03072803c4a909604359e66f3d994 schema:name dimensions_id
69 schema:value pub.1105265762
70 rdf:type schema:PropertyValue
71 Nb5905395a20641ca8e0dff9d653fb501 rdf:first sg:person.013131424271.32
72 rdf:rest N1fee1965f82642e3a357325aafbddda0
73 Nce159c177716420788f22f02f6a5a96c schema:name doi
74 schema:value 10.1007/s13676-018-0128-9
75 rdf:type schema:PropertyValue
76 Nd1aafa1e24154abfa444bb57d41266e9 schema:name Ecole des Mines de Saint-Etienne and LIMOS, UMR CNRS 6158, CMP Georges Charpak, 13541, Gardanne, France
77 rdf:type schema:Organization
78 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
79 schema:name Mathematical Sciences
80 rdf:type schema:DefinedTerm
81 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
82 schema:name Statistics
83 rdf:type schema:DefinedTerm
84 sg:journal.1136810 schema:issn 2192-4376
85 2192-4384
86 schema:name EURO Journal on Transportation and Logistics
87 rdf:type schema:Periodical
88 sg:person.012106122533.01 schema:affiliation https://www.grid.ac/institutes/grid.412043.0
89 schema:familyName Sanlaville
90 schema:givenName Eric
91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012106122533.01
92 rdf:type schema:Person
93 sg:person.012540730263.12 schema:affiliation Nd1aafa1e24154abfa444bb57d41266e9
94 schema:familyName Feillet
95 schema:givenName Dominique
96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012540730263.12
97 rdf:type schema:Person
98 sg:person.013131424271.32 schema:affiliation https://www.grid.ac/institutes/grid.7252.2
99 schema:familyName Schepler
100 schema:givenName Xavier
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013131424271.32
102 rdf:type schema:Person
103 sg:person.014404475350.55 schema:affiliation N6335f9d7b2a94536bda72e8d5aea7824
104 schema:familyName Absi
105 schema:givenName Nabil
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014404475350.55
107 rdf:type schema:Person
108 sg:pub.10.1007/978-0-387-75240-2_4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086156329
109 https://doi.org/10.1007/978-0-387-75240-2_4
110 rdf:type schema:CreativeWork
111 sg:pub.10.1007/978-1-4757-2620-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047983038
112 https://doi.org/10.1007/978-1-4757-2620-6
113 rdf:type schema:CreativeWork
114 sg:pub.10.1007/978-3-319-26580-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024335942
115 https://doi.org/10.1007/978-3-319-26580-3
116 rdf:type schema:CreativeWork
117 sg:pub.10.1007/s00291-006-0036-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010715081
118 https://doi.org/10.1007/s00291-006-0036-5
119 rdf:type schema:CreativeWork
120 sg:pub.10.1007/s10472-014-9444-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042981123
121 https://doi.org/10.1007/s10472-014-9444-4
122 rdf:type schema:CreativeWork
123 sg:pub.10.1007/s10479-010-0820-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052280639
124 https://doi.org/10.1007/s10479-010-0820-0
125 rdf:type schema:CreativeWork
126 sg:pub.10.1007/s10696-013-9178-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031687624
127 https://doi.org/10.1007/s10696-013-9178-3
128 rdf:type schema:CreativeWork
129 sg:pub.10.1007/s10951-016-0480-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033850030
130 https://doi.org/10.1007/s10951-016-0480-2
131 rdf:type schema:CreativeWork
132 sg:pub.10.1057/palgrave.mel.9100148 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010590188
133 https://doi.org/10.1057/palgrave.mel.9100148
134 rdf:type schema:CreativeWork
135 sg:pub.10.1057/palgrave.mel.9100182 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043856360
136 https://doi.org/10.1057/palgrave.mel.9100182
137 rdf:type schema:CreativeWork
138 https://app.dimensions.ai/details/publication/pub.1047983038 schema:CreativeWork
139 https://app.dimensions.ai/details/publication/pub.1109507188 schema:CreativeWork
140 https://doi.org/10.1002/9780470611432 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109507188
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1016/0166-218x(92)90255-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030317560
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1016/j.ejor.2009.05.031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004785026
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1016/j.ejor.2010.07.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050990210
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1016/j.ejor.2011.01.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003363534
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1016/j.ejor.2014.12.030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037641154
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1016/j.ejor.2015.05.079 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042132442
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1016/j.ejor.2016.04.029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042175121
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1016/j.engappai.2012.06.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020183752
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1016/j.trb.2009.07.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043411506
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1016/j.tre.2010.11.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050052856
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1016/s0167-5060(08)70743-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1038309764
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1016/s0191-2615(99)00057-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046819274
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1016/s1874-8651(09)60001-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011735666
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1109/wcica.2006.1714503 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094198262
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1137/s0097539796305778 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062880121
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1287/opre.31.3.559 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064729431
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1287/trsc.1050.0120 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064734157
175 rdf:type schema:CreativeWork
176 https://www.grid.ac/institutes/grid.412043.0 schema:alternateName Université de Caen Basse-Normandie
177 schema:name Normandie Univ, UNIHAVRE, LITIS, 76600, Le Havre, France
178 rdf:type schema:Organization
179 https://www.grid.ac/institutes/grid.7252.2 schema:alternateName University of Angers
180 schema:name LERIA, Université d’Angers, 49000, Angers, France
181 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...