The Microstructural Evolution of Rapidly Solidified Powder Aluminum 2024 During Thermal Processing View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03-29

AUTHORS

Caitlin Walde, Kyle Tsaknopoulos, Victor Champagne, Danielle Cote

ABSTRACT

Gas-atomized metallic powders are commonly used in solid-state deposition processes, such as cold spray and additive friction stir. While their post-process consolidated properties are widely studied, there is little research on the properties of the powders before processing. Understanding the powder characteristics before use in additive manufacturing could lead to fine-tuning properties of additively manufactured materials. This research studied the effect of various thermal treatment processes on the characteristics and microstructural evolution of powder aluminum alloy 2024. Treatment times and temperatures were guided by thermodynamic modeling. Light microscopy, scanning electron microscopy, transmission electron microscopy, energy-dispersive x-ray spectroscopy, electron backscatter diffraction, and differential scanning calorimetry were used to evaluate each condition. Thermodynamic models were used to predict the phase stability in these powders and were calibrated using the experimental results to give a more complete understanding of the phase transformations during thermal processing. More... »

PAGES

415-425

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s13632-019-00535-2

DOI

http://dx.doi.org/10.1007/s13632-019-00535-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1113084143


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0403", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Geology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0904", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Worcester Polytechnic Institute, 01609, Worcester, MA, USA", 
          "id": "http://www.grid.ac/institutes/grid.268323.e", 
          "name": [
            "Worcester Polytechnic Institute, 01609, Worcester, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Walde", 
        "givenName": "Caitlin", 
        "id": "sg:person.016373115014.95", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016373115014.95"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Worcester Polytechnic Institute, 01609, Worcester, MA, USA", 
          "id": "http://www.grid.ac/institutes/grid.268323.e", 
          "name": [
            "Worcester Polytechnic Institute, 01609, Worcester, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tsaknopoulos", 
        "givenName": "Kyle", 
        "id": "sg:person.011566172170.69", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011566172170.69"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "US Army Research Laboratory, Aberdeen Proving Ground, 21005-5069, Aberdeen, MD, USA", 
          "id": "http://www.grid.ac/institutes/grid.420282.e", 
          "name": [
            "US Army Research Laboratory, Aberdeen Proving Ground, 21005-5069, Aberdeen, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Champagne", 
        "givenName": "Victor", 
        "id": "sg:person.01146737454.56", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01146737454.56"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Worcester Polytechnic Institute, 01609, Worcester, MA, USA", 
          "id": "http://www.grid.ac/institutes/grid.268323.e", 
          "name": [
            "Worcester Polytechnic Institute, 01609, Worcester, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cote", 
        "givenName": "Danielle", 
        "id": "sg:person.015172157166.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015172157166.29"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s11666-017-0662-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092727513", 
          "https://doi.org/10.1007/s11666-017-0662-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11665-018-3550-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105967412", 
          "https://doi.org/10.1007/s11665-018-3550-0"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03-29", 
    "datePublishedReg": "2019-03-29", 
    "description": "Gas-atomized metallic powders are commonly used in solid-state deposition processes, such as cold spray and additive friction stir. While their post-process consolidated properties are widely studied, there is little research on the properties of the powders before processing. Understanding the powder characteristics before use in additive manufacturing could lead to fine-tuning properties of additively manufactured materials. This research studied the effect of various thermal treatment processes on the characteristics and microstructural evolution of powder aluminum alloy 2024. Treatment times and temperatures were guided by thermodynamic modeling. Light microscopy, scanning electron microscopy, transmission electron microscopy, energy-dispersive x-ray spectroscopy, electron backscatter diffraction, and differential scanning calorimetry were used to evaluate each condition. Thermodynamic models were used to predict the phase stability in these powders and were calibrated using the experimental results to give a more complete understanding of the phase transformations during thermal processing.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s13632-019-00535-2", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.4318495", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1136434", 
        "issn": [
          "2192-9262", 
          "2192-9270"
        ], 
        "name": "Metallography, Microstructure, and Analysis", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "8"
      }
    ], 
    "keywords": [
      "microstructural evolution", 
      "solid-state deposition process", 
      "thermal processing", 
      "additive friction stir", 
      "thermal treatment process", 
      "aluminum alloy 2024", 
      "electron backscatter diffraction", 
      "friction stir", 
      "cold spray", 
      "metallic powders", 
      "powder characteristics", 
      "additive manufacturing", 
      "electron microscopy", 
      "aluminum 2024", 
      "alloy 2024", 
      "deposition process", 
      "backscatter diffraction", 
      "phase transformation", 
      "treatment process", 
      "transmission electron microscopy", 
      "phase stability", 
      "powder", 
      "fine-tune properties", 
      "ray spectroscopy", 
      "differential scanning calorimetry", 
      "thermodynamic model", 
      "experimental results", 
      "thermodynamic modeling", 
      "scanning calorimetry", 
      "treatment time", 
      "microscopy", 
      "properties", 
      "stir", 
      "processing", 
      "manufacturing", 
      "spray", 
      "temperature", 
      "diffraction", 
      "characteristics", 
      "materials", 
      "process", 
      "modeling", 
      "stability", 
      "calorimetry", 
      "spectroscopy", 
      "conditions", 
      "evolution", 
      "model", 
      "results", 
      "complete understanding", 
      "time", 
      "transformation", 
      "effect", 
      "research", 
      "use", 
      "light microscopy", 
      "understanding", 
      "little research", 
      "Gas-atomized metallic powders", 
      "powder aluminum alloy 2024", 
      "Powder Aluminum 2024"
    ], 
    "name": "The Microstructural Evolution of Rapidly Solidified Powder Aluminum 2024 During Thermal Processing", 
    "pagination": "415-425", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1113084143"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s13632-019-00535-2"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s13632-019-00535-2", 
      "https://app.dimensions.ai/details/publication/pub.1113084143"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-12-01T19:44", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_813.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s13632-019-00535-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s13632-019-00535-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s13632-019-00535-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s13632-019-00535-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s13632-019-00535-2'


 

This table displays all metadata directly associated to this object as RDF triples.

165 TRIPLES      22 PREDICATES      91 URIs      78 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s13632-019-00535-2 schema:about anzsrc-for:04
2 anzsrc-for:0403
3 anzsrc-for:09
4 anzsrc-for:0904
5 anzsrc-for:0912
6 schema:author Nf3e9404f19d64da3bc4dbc5a61d1a7ad
7 schema:citation sg:pub.10.1007/s11665-018-3550-0
8 sg:pub.10.1007/s11666-017-0662-2
9 schema:datePublished 2019-03-29
10 schema:datePublishedReg 2019-03-29
11 schema:description Gas-atomized metallic powders are commonly used in solid-state deposition processes, such as cold spray and additive friction stir. While their post-process consolidated properties are widely studied, there is little research on the properties of the powders before processing. Understanding the powder characteristics before use in additive manufacturing could lead to fine-tuning properties of additively manufactured materials. This research studied the effect of various thermal treatment processes on the characteristics and microstructural evolution of powder aluminum alloy 2024. Treatment times and temperatures were guided by thermodynamic modeling. Light microscopy, scanning electron microscopy, transmission electron microscopy, energy-dispersive x-ray spectroscopy, electron backscatter diffraction, and differential scanning calorimetry were used to evaluate each condition. Thermodynamic models were used to predict the phase stability in these powders and were calibrated using the experimental results to give a more complete understanding of the phase transformations during thermal processing.
12 schema:genre article
13 schema:inLanguage en
14 schema:isAccessibleForFree false
15 schema:isPartOf N2bd943202cf14f569a63ef59e9afe253
16 N3fa6d698d12844ab9a64e9c48f1b0afe
17 sg:journal.1136434
18 schema:keywords Gas-atomized metallic powders
19 Powder Aluminum 2024
20 additive friction stir
21 additive manufacturing
22 alloy 2024
23 aluminum 2024
24 aluminum alloy 2024
25 backscatter diffraction
26 calorimetry
27 characteristics
28 cold spray
29 complete understanding
30 conditions
31 deposition process
32 differential scanning calorimetry
33 diffraction
34 effect
35 electron backscatter diffraction
36 electron microscopy
37 evolution
38 experimental results
39 fine-tune properties
40 friction stir
41 light microscopy
42 little research
43 manufacturing
44 materials
45 metallic powders
46 microscopy
47 microstructural evolution
48 model
49 modeling
50 phase stability
51 phase transformation
52 powder
53 powder aluminum alloy 2024
54 powder characteristics
55 process
56 processing
57 properties
58 ray spectroscopy
59 research
60 results
61 scanning calorimetry
62 solid-state deposition process
63 spectroscopy
64 spray
65 stability
66 stir
67 temperature
68 thermal processing
69 thermal treatment process
70 thermodynamic model
71 thermodynamic modeling
72 time
73 transformation
74 transmission electron microscopy
75 treatment process
76 treatment time
77 understanding
78 use
79 schema:name The Microstructural Evolution of Rapidly Solidified Powder Aluminum 2024 During Thermal Processing
80 schema:pagination 415-425
81 schema:productId N23f8921a9ce34e589b815d9ae8516daf
82 Nb5a2f4084555441180ee1b5524654bf3
83 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113084143
84 https://doi.org/10.1007/s13632-019-00535-2
85 schema:sdDatePublished 2021-12-01T19:44
86 schema:sdLicense https://scigraph.springernature.com/explorer/license/
87 schema:sdPublisher Ne0827a36b4814826a50bbb4f904a9d9e
88 schema:url https://doi.org/10.1007/s13632-019-00535-2
89 sgo:license sg:explorer/license/
90 sgo:sdDataset articles
91 rdf:type schema:ScholarlyArticle
92 N0dbcc273bd274878be8054baa46d8dd5 rdf:first sg:person.015172157166.29
93 rdf:rest rdf:nil
94 N23f8921a9ce34e589b815d9ae8516daf schema:name dimensions_id
95 schema:value pub.1113084143
96 rdf:type schema:PropertyValue
97 N2bd943202cf14f569a63ef59e9afe253 schema:volumeNumber 8
98 rdf:type schema:PublicationVolume
99 N3e73af6ca15d48c1a9caaa6db53c9345 rdf:first sg:person.011566172170.69
100 rdf:rest N763b7d8ad68c4f1eb8ecf6f693e0ce8d
101 N3fa6d698d12844ab9a64e9c48f1b0afe schema:issueNumber 3
102 rdf:type schema:PublicationIssue
103 N763b7d8ad68c4f1eb8ecf6f693e0ce8d rdf:first sg:person.01146737454.56
104 rdf:rest N0dbcc273bd274878be8054baa46d8dd5
105 Nb5a2f4084555441180ee1b5524654bf3 schema:name doi
106 schema:value 10.1007/s13632-019-00535-2
107 rdf:type schema:PropertyValue
108 Ne0827a36b4814826a50bbb4f904a9d9e schema:name Springer Nature - SN SciGraph project
109 rdf:type schema:Organization
110 Nf3e9404f19d64da3bc4dbc5a61d1a7ad rdf:first sg:person.016373115014.95
111 rdf:rest N3e73af6ca15d48c1a9caaa6db53c9345
112 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
113 schema:name Earth Sciences
114 rdf:type schema:DefinedTerm
115 anzsrc-for:0403 schema:inDefinedTermSet anzsrc-for:
116 schema:name Geology
117 rdf:type schema:DefinedTerm
118 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
119 schema:name Engineering
120 rdf:type schema:DefinedTerm
121 anzsrc-for:0904 schema:inDefinedTermSet anzsrc-for:
122 schema:name Chemical Engineering
123 rdf:type schema:DefinedTerm
124 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
125 schema:name Materials Engineering
126 rdf:type schema:DefinedTerm
127 sg:grant.4318495 http://pending.schema.org/fundedItem sg:pub.10.1007/s13632-019-00535-2
128 rdf:type schema:MonetaryGrant
129 sg:journal.1136434 schema:issn 2192-9262
130 2192-9270
131 schema:name Metallography, Microstructure, and Analysis
132 schema:publisher Springer Nature
133 rdf:type schema:Periodical
134 sg:person.01146737454.56 schema:affiliation grid-institutes:grid.420282.e
135 schema:familyName Champagne
136 schema:givenName Victor
137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01146737454.56
138 rdf:type schema:Person
139 sg:person.011566172170.69 schema:affiliation grid-institutes:grid.268323.e
140 schema:familyName Tsaknopoulos
141 schema:givenName Kyle
142 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011566172170.69
143 rdf:type schema:Person
144 sg:person.015172157166.29 schema:affiliation grid-institutes:grid.268323.e
145 schema:familyName Cote
146 schema:givenName Danielle
147 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015172157166.29
148 rdf:type schema:Person
149 sg:person.016373115014.95 schema:affiliation grid-institutes:grid.268323.e
150 schema:familyName Walde
151 schema:givenName Caitlin
152 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016373115014.95
153 rdf:type schema:Person
154 sg:pub.10.1007/s11665-018-3550-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105967412
155 https://doi.org/10.1007/s11665-018-3550-0
156 rdf:type schema:CreativeWork
157 sg:pub.10.1007/s11666-017-0662-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092727513
158 https://doi.org/10.1007/s11666-017-0662-2
159 rdf:type schema:CreativeWork
160 grid-institutes:grid.268323.e schema:alternateName Worcester Polytechnic Institute, 01609, Worcester, MA, USA
161 schema:name Worcester Polytechnic Institute, 01609, Worcester, MA, USA
162 rdf:type schema:Organization
163 grid-institutes:grid.420282.e schema:alternateName US Army Research Laboratory, Aberdeen Proving Ground, 21005-5069, Aberdeen, MD, USA
164 schema:name US Army Research Laboratory, Aberdeen Proving Ground, 21005-5069, Aberdeen, MD, USA
165 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...