Effects of Initial Austenite Grain Size on Microstructure and Mechanical Properties of 5% Nickel Cryogenic Steel View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-02-01

AUTHORS

Tao Xiong, Guang Xu, Qing Yuan, Hai-jiang Hu, Jun-yu Tian

ABSTRACT

In the present study, the relationship between initial austenite grain size and mechanical properties of a 5% nickel cryogenic steel was investigated. The microstructures of initial austenite grains and tempered martensites were analyzed by an optical microscope. In addition, a transmission electron microscope was employed to examine the morphologies of reversed austenite and refined tempered martensite laths. Further, tensile and cryogenic impact tests were conducted to evaluate the mechanical properties of the experimental steel. It was found that the impact toughness of the sample steel increased as the size of initial austenite grain decreased and the thicknesses of martensite laths decreased with the decrease in initial austenite grain size. The average grain size of initial austenite in the specimen austenitized at 830 °C for 60 min followed by tempering at 600 °C for 60 min was found to be 19.2 μm, and the maximum value of impact toughness reached 292.5 J. Therefore, the improvement in impact toughness can be attributed to the existence of refined tempered martensite laths and more amount of reversed austenites in the specimen. More... »

PAGES

241-248

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s13632-019-00523-6

DOI

http://dx.doi.org/10.1007/s13632-019-00523-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1111841632


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "The State Key Laboratory of Refractories and Metallurgy, Hubei Collaborative Innovation Center for Advanced Steels, Wuhan University of Science and Technology, 947 Heping Avenue, Qingshan District, 430081, Wuhan, China", 
          "id": "http://www.grid.ac/institutes/grid.412787.f", 
          "name": [
            "The State Key Laboratory of Refractories and Metallurgy, Hubei Collaborative Innovation Center for Advanced Steels, Wuhan University of Science and Technology, 947 Heping Avenue, Qingshan District, 430081, Wuhan, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xiong", 
        "givenName": "Tao", 
        "id": "sg:person.010175627541.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010175627541.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "The State Key Laboratory of Refractories and Metallurgy, Hubei Collaborative Innovation Center for Advanced Steels, Wuhan University of Science and Technology, 947 Heping Avenue, Qingshan District, 430081, Wuhan, China", 
          "id": "http://www.grid.ac/institutes/grid.412787.f", 
          "name": [
            "The State Key Laboratory of Refractories and Metallurgy, Hubei Collaborative Innovation Center for Advanced Steels, Wuhan University of Science and Technology, 947 Heping Avenue, Qingshan District, 430081, Wuhan, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xu", 
        "givenName": "Guang", 
        "id": "sg:person.016362676237.90", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016362676237.90"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "The State Key Laboratory of Refractories and Metallurgy, Hubei Collaborative Innovation Center for Advanced Steels, Wuhan University of Science and Technology, 947 Heping Avenue, Qingshan District, 430081, Wuhan, China", 
          "id": "http://www.grid.ac/institutes/grid.412787.f", 
          "name": [
            "The State Key Laboratory of Refractories and Metallurgy, Hubei Collaborative Innovation Center for Advanced Steels, Wuhan University of Science and Technology, 947 Heping Avenue, Qingshan District, 430081, Wuhan, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yuan", 
        "givenName": "Qing", 
        "id": "sg:person.014575311415.79", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014575311415.79"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "The State Key Laboratory of Refractories and Metallurgy, Hubei Collaborative Innovation Center for Advanced Steels, Wuhan University of Science and Technology, 947 Heping Avenue, Qingshan District, 430081, Wuhan, China", 
          "id": "http://www.grid.ac/institutes/grid.412787.f", 
          "name": [
            "The State Key Laboratory of Refractories and Metallurgy, Hubei Collaborative Innovation Center for Advanced Steels, Wuhan University of Science and Technology, 947 Heping Avenue, Qingshan District, 430081, Wuhan, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hu", 
        "givenName": "Hai-jiang", 
        "id": "sg:person.011240355163.71", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011240355163.71"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "The State Key Laboratory of Refractories and Metallurgy, Hubei Collaborative Innovation Center for Advanced Steels, Wuhan University of Science and Technology, 947 Heping Avenue, Qingshan District, 430081, Wuhan, China", 
          "id": "http://www.grid.ac/institutes/grid.412787.f", 
          "name": [
            "The State Key Laboratory of Refractories and Metallurgy, Hubei Collaborative Innovation Center for Advanced Steels, Wuhan University of Science and Technology, 947 Heping Avenue, Qingshan District, 430081, Wuhan, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tian", 
        "givenName": "Jun-yu", 
        "id": "sg:person.011357701651.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011357701651.01"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1016/s1006-706x(13)60109-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037996912", 
          "https://doi.org/10.1016/s1006-706x(13)60109-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02670424", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027137705", 
          "https://doi.org/10.1007/bf02670424"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40195-016-0496-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013532730", 
          "https://doi.org/10.1007/s40195-016-0496-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02659812", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050791130", 
          "https://doi.org/10.1007/bf02659812"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12666-016-0941-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013736033", 
          "https://doi.org/10.1007/s12666-016-0941-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1016/s1006-706x(13)60011-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047252584", 
          "https://doi.org/10.1016/s1006-706x(13)60011-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1016/s1006-706x(11)60064-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053245397", 
          "https://doi.org/10.1016/s1006-706x(11)60064-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02653488", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004302061", 
          "https://doi.org/10.1007/bf02653488"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-02-01", 
    "datePublishedReg": "2019-02-01", 
    "description": "In the present study, the relationship between initial austenite grain size and mechanical properties of a 5% nickel cryogenic steel was investigated. The microstructures of initial austenite grains and tempered martensites were analyzed by an optical microscope. In addition, a transmission electron microscope was employed to examine the morphologies of reversed austenite and refined tempered martensite laths. Further, tensile and cryogenic impact tests were conducted to evaluate the mechanical properties of the experimental steel. It was found that the impact toughness of the sample steel increased as the size of initial austenite grain decreased and the thicknesses of martensite laths decreased with the decrease in initial austenite grain size. The average grain size of initial austenite in the specimen austenitized at 830\u00a0\u00b0C for 60\u00a0min followed by tempering at 600\u00a0\u00b0C for 60\u00a0min was found to be 19.2\u00a0\u03bcm, and the maximum value of impact toughness reached 292.5\u00a0J. Therefore, the improvement in impact toughness can be attributed to the existence of refined tempered martensite laths and more amount of reversed austenites in the specimen.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s13632-019-00523-6", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.8932090", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.8275749", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1136434", 
        "issn": [
          "2192-9262", 
          "2192-9270"
        ], 
        "name": "Metallography, Microstructure, and Analysis", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "8"
      }
    ], 
    "keywords": [
      "initial austenite grain size", 
      "austenite grain size", 
      "impact toughness", 
      "martensite laths", 
      "mechanical properties", 
      "grain size", 
      "cryogenic steels", 
      "initial austenite grains", 
      "austenite grains", 
      "average grain size", 
      "sample steel", 
      "experimental steel", 
      "reversed austenite", 
      "impact tests", 
      "steel", 
      "toughness", 
      "austenite", 
      "optical microscope", 
      "transmission electron microscope", 
      "initial austenite", 
      "laths", 
      "electron microscope", 
      "microstructure", 
      "maximum value", 
      "more amount", 
      "properties", 
      "microscope", 
      "martensite", 
      "grains", 
      "specimen", 
      "thickness", 
      "size", 
      "morphology", 
      "test", 
      "min", 
      "amount", 
      "improvement", 
      "values", 
      "effect", 
      "addition", 
      "decrease", 
      "present study", 
      "study", 
      "Therefore", 
      "existence", 
      "relationship", 
      "nickel cryogenic steel", 
      "tempered martensite laths", 
      "cryogenic impact tests"
    ], 
    "name": "Effects of Initial Austenite Grain Size on Microstructure and Mechanical Properties of 5% Nickel Cryogenic Steel", 
    "pagination": "241-248", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1111841632"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s13632-019-00523-6"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s13632-019-00523-6", 
      "https://app.dimensions.ai/details/publication/pub.1111841632"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-11-01T18:37", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_831.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s13632-019-00523-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s13632-019-00523-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s13632-019-00523-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s13632-019-00523-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s13632-019-00523-6'


 

This table displays all metadata directly associated to this object as RDF triples.

171 TRIPLES      22 PREDICATES      82 URIs      66 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s13632-019-00523-6 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author Na23890646e454454aa3d55bb72849f1a
4 schema:citation sg:pub.10.1007/bf02653488
5 sg:pub.10.1007/bf02659812
6 sg:pub.10.1007/bf02670424
7 sg:pub.10.1007/s12666-016-0941-5
8 sg:pub.10.1007/s40195-016-0496-9
9 sg:pub.10.1016/s1006-706x(11)60064-2
10 sg:pub.10.1016/s1006-706x(13)60011-4
11 sg:pub.10.1016/s1006-706x(13)60109-0
12 schema:datePublished 2019-02-01
13 schema:datePublishedReg 2019-02-01
14 schema:description In the present study, the relationship between initial austenite grain size and mechanical properties of a 5% nickel cryogenic steel was investigated. The microstructures of initial austenite grains and tempered martensites were analyzed by an optical microscope. In addition, a transmission electron microscope was employed to examine the morphologies of reversed austenite and refined tempered martensite laths. Further, tensile and cryogenic impact tests were conducted to evaluate the mechanical properties of the experimental steel. It was found that the impact toughness of the sample steel increased as the size of initial austenite grain decreased and the thicknesses of martensite laths decreased with the decrease in initial austenite grain size. The average grain size of initial austenite in the specimen austenitized at 830 °C for 60 min followed by tempering at 600 °C for 60 min was found to be 19.2 μm, and the maximum value of impact toughness reached 292.5 J. Therefore, the improvement in impact toughness can be attributed to the existence of refined tempered martensite laths and more amount of reversed austenites in the specimen.
15 schema:genre article
16 schema:inLanguage en
17 schema:isAccessibleForFree false
18 schema:isPartOf N465447cd965c4c6da9fce5bd38cc3e10
19 N4d356d5568764a69a98290982e5a0d74
20 sg:journal.1136434
21 schema:keywords Therefore
22 addition
23 amount
24 austenite
25 austenite grain size
26 austenite grains
27 average grain size
28 cryogenic impact tests
29 cryogenic steels
30 decrease
31 effect
32 electron microscope
33 existence
34 experimental steel
35 grain size
36 grains
37 impact tests
38 impact toughness
39 improvement
40 initial austenite
41 initial austenite grain size
42 initial austenite grains
43 laths
44 martensite
45 martensite laths
46 maximum value
47 mechanical properties
48 microscope
49 microstructure
50 min
51 more amount
52 morphology
53 nickel cryogenic steel
54 optical microscope
55 present study
56 properties
57 relationship
58 reversed austenite
59 sample steel
60 size
61 specimen
62 steel
63 study
64 tempered martensite laths
65 test
66 thickness
67 toughness
68 transmission electron microscope
69 values
70 schema:name Effects of Initial Austenite Grain Size on Microstructure and Mechanical Properties of 5% Nickel Cryogenic Steel
71 schema:pagination 241-248
72 schema:productId N2b03a27c8d314dfda9e4cebab6415047
73 Na72c4dca74d14abb974a80e17bda52ad
74 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111841632
75 https://doi.org/10.1007/s13632-019-00523-6
76 schema:sdDatePublished 2021-11-01T18:37
77 schema:sdLicense https://scigraph.springernature.com/explorer/license/
78 schema:sdPublisher N1f569d49055d4f96986af7ebb6513be8
79 schema:url https://doi.org/10.1007/s13632-019-00523-6
80 sgo:license sg:explorer/license/
81 sgo:sdDataset articles
82 rdf:type schema:ScholarlyArticle
83 N1f569d49055d4f96986af7ebb6513be8 schema:name Springer Nature - SN SciGraph project
84 rdf:type schema:Organization
85 N2b03a27c8d314dfda9e4cebab6415047 schema:name dimensions_id
86 schema:value pub.1111841632
87 rdf:type schema:PropertyValue
88 N3ae7d6f1d38b471282488bdba112e39a rdf:first sg:person.016362676237.90
89 rdf:rest N494fa092815d468f9a459a807c868aa1
90 N465447cd965c4c6da9fce5bd38cc3e10 schema:volumeNumber 8
91 rdf:type schema:PublicationVolume
92 N494fa092815d468f9a459a807c868aa1 rdf:first sg:person.014575311415.79
93 rdf:rest N4e1c307f48e8403fb8711bd680b6df3b
94 N4d356d5568764a69a98290982e5a0d74 schema:issueNumber 2
95 rdf:type schema:PublicationIssue
96 N4e1c307f48e8403fb8711bd680b6df3b rdf:first sg:person.011240355163.71
97 rdf:rest N8bd1305cc85d45bc9b271b2c6aa18f93
98 N8bd1305cc85d45bc9b271b2c6aa18f93 rdf:first sg:person.011357701651.01
99 rdf:rest rdf:nil
100 Na23890646e454454aa3d55bb72849f1a rdf:first sg:person.010175627541.37
101 rdf:rest N3ae7d6f1d38b471282488bdba112e39a
102 Na72c4dca74d14abb974a80e17bda52ad schema:name doi
103 schema:value 10.1007/s13632-019-00523-6
104 rdf:type schema:PropertyValue
105 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
106 schema:name Engineering
107 rdf:type schema:DefinedTerm
108 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
109 schema:name Materials Engineering
110 rdf:type schema:DefinedTerm
111 sg:grant.8275749 http://pending.schema.org/fundedItem sg:pub.10.1007/s13632-019-00523-6
112 rdf:type schema:MonetaryGrant
113 sg:grant.8932090 http://pending.schema.org/fundedItem sg:pub.10.1007/s13632-019-00523-6
114 rdf:type schema:MonetaryGrant
115 sg:journal.1136434 schema:issn 2192-9262
116 2192-9270
117 schema:name Metallography, Microstructure, and Analysis
118 schema:publisher Springer Nature
119 rdf:type schema:Periodical
120 sg:person.010175627541.37 schema:affiliation grid-institutes:grid.412787.f
121 schema:familyName Xiong
122 schema:givenName Tao
123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010175627541.37
124 rdf:type schema:Person
125 sg:person.011240355163.71 schema:affiliation grid-institutes:grid.412787.f
126 schema:familyName Hu
127 schema:givenName Hai-jiang
128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011240355163.71
129 rdf:type schema:Person
130 sg:person.011357701651.01 schema:affiliation grid-institutes:grid.412787.f
131 schema:familyName Tian
132 schema:givenName Jun-yu
133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011357701651.01
134 rdf:type schema:Person
135 sg:person.014575311415.79 schema:affiliation grid-institutes:grid.412787.f
136 schema:familyName Yuan
137 schema:givenName Qing
138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014575311415.79
139 rdf:type schema:Person
140 sg:person.016362676237.90 schema:affiliation grid-institutes:grid.412787.f
141 schema:familyName Xu
142 schema:givenName Guang
143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016362676237.90
144 rdf:type schema:Person
145 sg:pub.10.1007/bf02653488 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004302061
146 https://doi.org/10.1007/bf02653488
147 rdf:type schema:CreativeWork
148 sg:pub.10.1007/bf02659812 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050791130
149 https://doi.org/10.1007/bf02659812
150 rdf:type schema:CreativeWork
151 sg:pub.10.1007/bf02670424 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027137705
152 https://doi.org/10.1007/bf02670424
153 rdf:type schema:CreativeWork
154 sg:pub.10.1007/s12666-016-0941-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013736033
155 https://doi.org/10.1007/s12666-016-0941-5
156 rdf:type schema:CreativeWork
157 sg:pub.10.1007/s40195-016-0496-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013532730
158 https://doi.org/10.1007/s40195-016-0496-9
159 rdf:type schema:CreativeWork
160 sg:pub.10.1016/s1006-706x(11)60064-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053245397
161 https://doi.org/10.1016/s1006-706x(11)60064-2
162 rdf:type schema:CreativeWork
163 sg:pub.10.1016/s1006-706x(13)60011-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047252584
164 https://doi.org/10.1016/s1006-706x(13)60011-4
165 rdf:type schema:CreativeWork
166 sg:pub.10.1016/s1006-706x(13)60109-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037996912
167 https://doi.org/10.1016/s1006-706x(13)60109-0
168 rdf:type schema:CreativeWork
169 grid-institutes:grid.412787.f schema:alternateName The State Key Laboratory of Refractories and Metallurgy, Hubei Collaborative Innovation Center for Advanced Steels, Wuhan University of Science and Technology, 947 Heping Avenue, Qingshan District, 430081, Wuhan, China
170 schema:name The State Key Laboratory of Refractories and Metallurgy, Hubei Collaborative Innovation Center for Advanced Steels, Wuhan University of Science and Technology, 947 Heping Avenue, Qingshan District, 430081, Wuhan, China
171 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...