Study on Dynamic Recrystallization Behaviors in a Hot-Deformed FB2 Ultra-supercritical Rotor Steel View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-04

AUTHORS

Fei Chen, He Wang, Hongyang Zhu, Zhenshan Cui

ABSTRACT

In the present work, hot deformation behaviors of FB2 ultra-super-critical rotor steel are investigated by isothermal compression tests under the deformation temperature range of 1323–1473 K and strain rate range of 0.01–1 s−1. The microstructure evolution of the deformed samples and the nucleation mechanism of dynamic recrystallization are studied by using electron backscatter diffraction and transmission electron microscopy. The results show that: (1) when the strain rate is higher than 0.1 s−1 and the temperature is lower than 1373 K, it easily results in a large number of substructures with relatively low-angle boundaries due to the intense work hardening effect. (2) Discontinuous dynamic recrystallization characterized by grain boundary bulging is the dominant nucleation mechanism for the studied rotor steel. (3) Geometrically necessary dislocations are sensitive to strain rate for the studied rotor steel but is less sensitive to the deformation temperature. (4) The low-angle boundaries fraction slightly increases with the increase in the Zener–Hollomon (Z) parameter under the test conditions. More... »

PAGES

145-158

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s13632-019-00522-7

DOI

http://dx.doi.org/10.1007/s13632-019-00522-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1111949770


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Shanghai Jiao Tong University", 
          "id": "https://www.grid.ac/institutes/grid.16821.3c", 
          "name": [
            "Department of Plasticity Technology, School of Materials Science and Engineering, Shanghai Jiao Tong University, 1954 Huashan Rd, 200030, Shanghai, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Fei", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Capital Aerospace Machinery Corporation Limited, 100076, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "He", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Shanghai Heavy Machinery Plant Co Ltd, 1800 Jiangchuan Rd, 200245, Shanghai, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhu", 
        "givenName": "Hongyang", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Shanghai Jiao Tong University", 
          "id": "https://www.grid.ac/institutes/grid.16821.3c", 
          "name": [
            "Department of Plasticity Technology, School of Materials Science and Engineering, Shanghai Jiao Tong University, 1954 Huashan Rd, 200030, Shanghai, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cui", 
        "givenName": "Zhenshan", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s11665-014-1083-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000230159", 
          "https://doi.org/10.1007/s11665-014-1083-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actamat.2004.07.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000272488"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.energy.2010.03.030", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000378498"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1179/1432891713z.000000000252", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000918220"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.msea.2012.01.061", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005293146"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1016/s1006-706x(16)30074-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009547664", 
          "https://doi.org/10.1016/s1006-706x(16)30074-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/14786430701532780", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011865219"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.msea.2010.01.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013208008"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1460-2695.2012.01695.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015075372"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.msea.2011.03.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016407434"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1359-6462(01)01139-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017947974"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.matdes.2013.10.071", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018802963"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.matdes.2016.09.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019855483"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.matdes.2016.02.072", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020854680"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.matdes.2016.02.072", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020854680"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.matdes.2016.02.072", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020854680"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.matdes.2016.02.072", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020854680"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.msea.2013.03.031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022798975"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1359-6462(02)00335-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023084743"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1359-6462(02)00335-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023084743"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.matdes.2016.03.050", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025115180"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11661-011-0889-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026624643", 
          "https://doi.org/10.1007/s11661-011-0889-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.matdes.2016.02.052", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028358952"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.matdes.2013.12.051", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031415175"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmatprotec.2008.05.047", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034191723"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actamat.2009.02.033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037640443"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.matdes.2016.10.044", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037994120"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.scriptamat.2010.01.047", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038860356"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.msea.2016.10.095", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039232233"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0001-6160(78)90030-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039615486"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0001-6160(78)90030-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039615486"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.pmatsci.2013.09.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039907384"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.msea.2015.03.036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042552396"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rspa.2007.0020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042896694"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jallcom.2015.04.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043856444"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.enpol.2011.06.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044025822"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1468-6996/9/1/013002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044400186"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1468-6996/9/1/013002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044400186"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00339-016-0129-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045727265", 
          "https://doi.org/10.1007/s00339-016-0129-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.enpol.2009.06.068", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047127321"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1017973432592", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051046681", 
          "https://doi.org/10.1023/a:1017973432592"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-5096(98)00103-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051971723"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00472336.2014.981283", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052409006"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.matdes.2017.02.088", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084094770"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.msea.2017.11.059", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092869097"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11661-017-4447-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099930783", 
          "https://doi.org/10.1007/s11661-017-4447-5"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-04", 
    "datePublishedReg": "2019-04-01", 
    "description": "In the present work, hot deformation behaviors of FB2 ultra-super-critical rotor steel are investigated by isothermal compression tests under the deformation temperature range of 1323\u20131473 K and strain rate range of 0.01\u20131 s\u22121. The microstructure evolution of the deformed samples and the nucleation mechanism of dynamic recrystallization are studied by using electron backscatter diffraction and transmission electron microscopy. The results show that: (1) when the strain rate is higher than 0.1 s\u22121 and the temperature is lower than 1373 K, it easily results in a large number of substructures with relatively low-angle boundaries due to the intense work hardening effect. (2) Discontinuous dynamic recrystallization characterized by grain boundary bulging is the dominant nucleation mechanism for the studied rotor steel. (3) Geometrically necessary dislocations are sensitive to strain rate for the studied rotor steel but is less sensitive to the deformation temperature. (4) The low-angle boundaries fraction slightly increases with the increase in the Zener\u2013Hollomon (Z) parameter under the test conditions.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s13632-019-00522-7", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136434", 
        "issn": [
          "2192-9262", 
          "2192-9270"
        ], 
        "name": "Metallography, Microstructure, and Analysis", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "8"
      }
    ], 
    "name": "Study on Dynamic Recrystallization Behaviors in a Hot-Deformed FB2 Ultra-supercritical Rotor Steel", 
    "pagination": "145-158", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "2ee742d718be2f7b7ff6ff8c24dcca58a9579512433ed2a36b2009ecc67d183c"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s13632-019-00522-7"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1111949770"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s13632-019-00522-7", 
      "https://app.dimensions.ai/details/publication/pub.1111949770"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:04", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000366_0000000366/records_112045_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs13632-019-00522-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s13632-019-00522-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s13632-019-00522-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s13632-019-00522-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s13632-019-00522-7'


 

This table displays all metadata directly associated to this object as RDF triples.

208 TRIPLES      21 PREDICATES      67 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s13632-019-00522-7 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N8e82ac6ae29b4078b3052edd3329e19b
4 schema:citation sg:pub.10.1007/s00339-016-0129-1
5 sg:pub.10.1007/s11661-011-0889-3
6 sg:pub.10.1007/s11661-017-4447-5
7 sg:pub.10.1007/s11665-014-1083-8
8 sg:pub.10.1016/s1006-706x(16)30074-7
9 sg:pub.10.1023/a:1017973432592
10 https://doi.org/10.1016/0001-6160(78)90030-5
11 https://doi.org/10.1016/j.actamat.2004.07.015
12 https://doi.org/10.1016/j.actamat.2009.02.033
13 https://doi.org/10.1016/j.energy.2010.03.030
14 https://doi.org/10.1016/j.enpol.2009.06.068
15 https://doi.org/10.1016/j.enpol.2011.06.011
16 https://doi.org/10.1016/j.jallcom.2015.04.008
17 https://doi.org/10.1016/j.jmatprotec.2008.05.047
18 https://doi.org/10.1016/j.matdes.2013.10.071
19 https://doi.org/10.1016/j.matdes.2013.12.051
20 https://doi.org/10.1016/j.matdes.2016.02.052
21 https://doi.org/10.1016/j.matdes.2016.02.072
22 https://doi.org/10.1016/j.matdes.2016.03.050
23 https://doi.org/10.1016/j.matdes.2016.09.012
24 https://doi.org/10.1016/j.matdes.2016.10.044
25 https://doi.org/10.1016/j.matdes.2017.02.088
26 https://doi.org/10.1016/j.msea.2010.01.004
27 https://doi.org/10.1016/j.msea.2011.03.008
28 https://doi.org/10.1016/j.msea.2012.01.061
29 https://doi.org/10.1016/j.msea.2013.03.031
30 https://doi.org/10.1016/j.msea.2015.03.036
31 https://doi.org/10.1016/j.msea.2016.10.095
32 https://doi.org/10.1016/j.msea.2017.11.059
33 https://doi.org/10.1016/j.pmatsci.2013.09.002
34 https://doi.org/10.1016/j.scriptamat.2010.01.047
35 https://doi.org/10.1016/s0022-5096(98)00103-3
36 https://doi.org/10.1016/s1359-6462(01)01139-3
37 https://doi.org/10.1016/s1359-6462(02)00335-4
38 https://doi.org/10.1080/00472336.2014.981283
39 https://doi.org/10.1080/14786430701532780
40 https://doi.org/10.1088/1468-6996/9/1/013002
41 https://doi.org/10.1098/rspa.2007.0020
42 https://doi.org/10.1111/j.1460-2695.2012.01695.x
43 https://doi.org/10.1179/1432891713z.000000000252
44 schema:datePublished 2019-04
45 schema:datePublishedReg 2019-04-01
46 schema:description In the present work, hot deformation behaviors of FB2 ultra-super-critical rotor steel are investigated by isothermal compression tests under the deformation temperature range of 1323–1473 K and strain rate range of 0.01–1 s−1. The microstructure evolution of the deformed samples and the nucleation mechanism of dynamic recrystallization are studied by using electron backscatter diffraction and transmission electron microscopy. The results show that: (1) when the strain rate is higher than 0.1 s−1 and the temperature is lower than 1373 K, it easily results in a large number of substructures with relatively low-angle boundaries due to the intense work hardening effect. (2) Discontinuous dynamic recrystallization characterized by grain boundary bulging is the dominant nucleation mechanism for the studied rotor steel. (3) Geometrically necessary dislocations are sensitive to strain rate for the studied rotor steel but is less sensitive to the deformation temperature. (4) The low-angle boundaries fraction slightly increases with the increase in the Zener–Hollomon (Z) parameter under the test conditions.
47 schema:genre research_article
48 schema:inLanguage en
49 schema:isAccessibleForFree false
50 schema:isPartOf N748547a6541b4024b55b6c773896641b
51 Nc6b38c947c3f4a219c1af80950dea983
52 sg:journal.1136434
53 schema:name Study on Dynamic Recrystallization Behaviors in a Hot-Deformed FB2 Ultra-supercritical Rotor Steel
54 schema:pagination 145-158
55 schema:productId N01d901f90b7f40f9a32fa6a09e3d3044
56 N17b68c21b60b4b5fb2002e0235496964
57 N69140873f4c94c39ae05abb6acf0ed74
58 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111949770
59 https://doi.org/10.1007/s13632-019-00522-7
60 schema:sdDatePublished 2019-04-11T13:04
61 schema:sdLicense https://scigraph.springernature.com/explorer/license/
62 schema:sdPublisher Na2e0a4412e074b5db8ae9c69238ab642
63 schema:url https://link.springer.com/10.1007%2Fs13632-019-00522-7
64 sgo:license sg:explorer/license/
65 sgo:sdDataset articles
66 rdf:type schema:ScholarlyArticle
67 N01d901f90b7f40f9a32fa6a09e3d3044 schema:name dimensions_id
68 schema:value pub.1111949770
69 rdf:type schema:PropertyValue
70 N17b68c21b60b4b5fb2002e0235496964 schema:name readcube_id
71 schema:value 2ee742d718be2f7b7ff6ff8c24dcca58a9579512433ed2a36b2009ecc67d183c
72 rdf:type schema:PropertyValue
73 N43911572d55d481d9f183a8bcca57192 schema:affiliation N95cfc6298fb048bd97ed9c52dc7f62d1
74 schema:familyName Wang
75 schema:givenName He
76 rdf:type schema:Person
77 N62d621916ba3450d831fa04dc9862f89 schema:affiliation N8c77650277dc46639782a7b742c1b9ec
78 schema:familyName Zhu
79 schema:givenName Hongyang
80 rdf:type schema:Person
81 N69140873f4c94c39ae05abb6acf0ed74 schema:name doi
82 schema:value 10.1007/s13632-019-00522-7
83 rdf:type schema:PropertyValue
84 N748547a6541b4024b55b6c773896641b schema:volumeNumber 8
85 rdf:type schema:PublicationVolume
86 N8034236651534d2394184c5b6a775cb3 rdf:first N62d621916ba3450d831fa04dc9862f89
87 rdf:rest Nc47b57d3f74a485db216b6a3c21ae34d
88 N81a5763cbba04d41a94af126efdbb37f schema:affiliation https://www.grid.ac/institutes/grid.16821.3c
89 schema:familyName Cui
90 schema:givenName Zhenshan
91 rdf:type schema:Person
92 N8c77650277dc46639782a7b742c1b9ec schema:name Shanghai Heavy Machinery Plant Co Ltd, 1800 Jiangchuan Rd, 200245, Shanghai, China
93 rdf:type schema:Organization
94 N8e82ac6ae29b4078b3052edd3329e19b rdf:first Nebbb865f82d24480845036f34407ba4f
95 rdf:rest Na171f4cf06f545f4adbde3c1563fd86c
96 N95cfc6298fb048bd97ed9c52dc7f62d1 schema:name Capital Aerospace Machinery Corporation Limited, 100076, Beijing, China
97 rdf:type schema:Organization
98 Na171f4cf06f545f4adbde3c1563fd86c rdf:first N43911572d55d481d9f183a8bcca57192
99 rdf:rest N8034236651534d2394184c5b6a775cb3
100 Na2e0a4412e074b5db8ae9c69238ab642 schema:name Springer Nature - SN SciGraph project
101 rdf:type schema:Organization
102 Nc47b57d3f74a485db216b6a3c21ae34d rdf:first N81a5763cbba04d41a94af126efdbb37f
103 rdf:rest rdf:nil
104 Nc6b38c947c3f4a219c1af80950dea983 schema:issueNumber 2
105 rdf:type schema:PublicationIssue
106 Nebbb865f82d24480845036f34407ba4f schema:affiliation https://www.grid.ac/institutes/grid.16821.3c
107 schema:familyName Chen
108 schema:givenName Fei
109 rdf:type schema:Person
110 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
111 schema:name Engineering
112 rdf:type schema:DefinedTerm
113 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
114 schema:name Materials Engineering
115 rdf:type schema:DefinedTerm
116 sg:journal.1136434 schema:issn 2192-9262
117 2192-9270
118 schema:name Metallography, Microstructure, and Analysis
119 rdf:type schema:Periodical
120 sg:pub.10.1007/s00339-016-0129-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045727265
121 https://doi.org/10.1007/s00339-016-0129-1
122 rdf:type schema:CreativeWork
123 sg:pub.10.1007/s11661-011-0889-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026624643
124 https://doi.org/10.1007/s11661-011-0889-3
125 rdf:type schema:CreativeWork
126 sg:pub.10.1007/s11661-017-4447-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099930783
127 https://doi.org/10.1007/s11661-017-4447-5
128 rdf:type schema:CreativeWork
129 sg:pub.10.1007/s11665-014-1083-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000230159
130 https://doi.org/10.1007/s11665-014-1083-8
131 rdf:type schema:CreativeWork
132 sg:pub.10.1016/s1006-706x(16)30074-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009547664
133 https://doi.org/10.1016/s1006-706x(16)30074-7
134 rdf:type schema:CreativeWork
135 sg:pub.10.1023/a:1017973432592 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051046681
136 https://doi.org/10.1023/a:1017973432592
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1016/0001-6160(78)90030-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039615486
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1016/j.actamat.2004.07.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000272488
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1016/j.actamat.2009.02.033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037640443
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1016/j.energy.2010.03.030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000378498
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1016/j.enpol.2009.06.068 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047127321
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1016/j.enpol.2011.06.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044025822
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1016/j.jallcom.2015.04.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043856444
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1016/j.jmatprotec.2008.05.047 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034191723
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1016/j.matdes.2013.10.071 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018802963
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1016/j.matdes.2013.12.051 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031415175
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1016/j.matdes.2016.02.052 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028358952
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1016/j.matdes.2016.02.072 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020854680
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1016/j.matdes.2016.03.050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025115180
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1016/j.matdes.2016.09.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019855483
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1016/j.matdes.2016.10.044 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037994120
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1016/j.matdes.2017.02.088 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084094770
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1016/j.msea.2010.01.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013208008
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1016/j.msea.2011.03.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016407434
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1016/j.msea.2012.01.061 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005293146
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1016/j.msea.2013.03.031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022798975
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1016/j.msea.2015.03.036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042552396
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1016/j.msea.2016.10.095 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039232233
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1016/j.msea.2017.11.059 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092869097
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1016/j.pmatsci.2013.09.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039907384
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1016/j.scriptamat.2010.01.047 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038860356
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1016/s0022-5096(98)00103-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051971723
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1016/s1359-6462(01)01139-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017947974
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1016/s1359-6462(02)00335-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023084743
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1080/00472336.2014.981283 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052409006
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1080/14786430701532780 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011865219
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1088/1468-6996/9/1/013002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044400186
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1098/rspa.2007.0020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042896694
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1111/j.1460-2695.2012.01695.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1015075372
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1179/1432891713z.000000000252 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000918220
205 rdf:type schema:CreativeWork
206 https://www.grid.ac/institutes/grid.16821.3c schema:alternateName Shanghai Jiao Tong University
207 schema:name Department of Plasticity Technology, School of Materials Science and Engineering, Shanghai Jiao Tong University, 1954 Huashan Rd, 200030, Shanghai, China
208 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...