The Effect of Carbon and Silicon Alloying Additions on the Morphology of Pores and Tensile Characteristics of Sintered Steels View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-01-24

AUTHORS

Walid Khraisat, Wisam Abu Jadayil, Nathir Rawashdeh

ABSTRACT

The influence of C and Si on pore morphology and tensile behavior of Fe–C–P–Si was investigated. The contribution of C on the morphology of pores was explained using thermodynamic formulation by incorporating the surface curvature effect. Thermodynamic analysis of the pore surface suggests that C is enriched at all regions within the pore whether its convex or concave regions, resulting in C coverage of the surface pore. The C coverage will reduce the surface energy without changing the pore’s morphology. Accordingly, C has no effect on surface rounding of pores. Compacted tensile test specimens of Fe–C–P–Si powder were made to produce elongated pores. Tensile testing shows the effect of the sintered density, microstructure, pore morphology, and grain boundary on the mechanical properties. It was found that ductility is affected by pore morphology and grain boundaries, but UTS is more affected by the sintered density and the matrix microstructure. More... »

PAGES

182-188

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s13632-019-00520-9

DOI

http://dx.doi.org/10.1007/s13632-019-00520-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1111636771


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Industrial Engineering Department, The University of Jordan, Amman, Jordan", 
          "id": "http://www.grid.ac/institutes/grid.9670.8", 
          "name": [
            "Industrial Engineering Department, The University of Jordan, Amman, Jordan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Khraisat", 
        "givenName": "Walid", 
        "id": "sg:person.07511044223.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07511044223.47"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Mechanical and Industrial Engineering Department, The American University of Ras Al Khaimah, Ras Al Khaimah, UAE", 
          "id": "http://www.grid.ac/institutes/grid.510262.2", 
          "name": [
            "Mechanical and Industrial Engineering Department, The American University of Ras Al Khaimah, Ras Al Khaimah, UAE"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Abu Jadayil", 
        "givenName": "Wisam", 
        "id": "sg:person.015631573527.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015631573527.33"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Mechatronics Engineering Department, German Jordanian University, Amman, Jordan", 
          "id": "http://www.grid.ac/institutes/grid.440896.7", 
          "name": [
            "Mechatronics Engineering Department, German Jordanian University, Amman, Jordan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rawashdeh", 
        "givenName": "Nathir", 
        "id": "sg:person.010243153443.96", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010243153443.96"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-3-319-53898-3_2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090664631", 
          "https://doi.org/10.1007/978-3-319-53898-3_2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10853-011-6159-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032888867", 
          "https://doi.org/10.1007/s10853-011-6159-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep24326", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002113197", 
          "https://doi.org/10.1038/srep24326"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-01-24", 
    "datePublishedReg": "2019-01-24", 
    "description": "The influence of C and Si on pore morphology and tensile behavior of Fe\u2013C\u2013P\u2013Si was investigated. The contribution of C on the morphology of pores was explained using thermodynamic formulation by incorporating the surface curvature effect. Thermodynamic analysis of the pore surface suggests that C is enriched at all regions within the pore whether its convex or concave regions, resulting in C coverage of the surface pore. The C coverage will reduce the surface energy without changing the pore\u2019s morphology. Accordingly, C has no effect on surface rounding of pores. Compacted tensile test specimens of Fe\u2013C\u2013P\u2013Si powder were made to produce elongated pores. Tensile testing shows the effect of the sintered density, microstructure, pore morphology, and grain boundary on the mechanical properties. It was found that ductility is affected by pore morphology and grain boundaries, but UTS is more affected by the sintered density and the matrix microstructure.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s13632-019-00520-9", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136434", 
        "issn": [
          "2192-9262", 
          "2192-9270"
        ], 
        "name": "Metallography, Microstructure, and Analysis", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "8"
      }
    ], 
    "keywords": [
      "morphology of pores", 
      "pore morphology", 
      "sintered density", 
      "grain boundaries", 
      "tensile test specimens", 
      "surface curvature effect", 
      "sintered steels", 
      "Si powder", 
      "tensile behavior", 
      "matrix microstructure", 
      "mechanical properties", 
      "test specimens", 
      "tensile testing", 
      "alloying additions", 
      "surface pores", 
      "tensile characteristics", 
      "effect of carbon", 
      "surface energy", 
      "pore surface", 
      "surface rounding", 
      "thermodynamic analysis", 
      "curvature effects", 
      "microstructure", 
      "pores", 
      "Si", 
      "thermodynamic formulation", 
      "concave regions", 
      "ductility", 
      "steel", 
      "morphology", 
      "UTS", 
      "powder", 
      "density", 
      "boundaries", 
      "Fe", 
      "surface", 
      "energy", 
      "properties", 
      "carbon", 
      "formulation", 
      "effect", 
      "specimens", 
      "behavior", 
      "characteristics", 
      "influence", 
      "testing", 
      "region", 
      "coverage", 
      "addition", 
      "convex", 
      "analysis", 
      "rounding", 
      "contribution", 
      "Silicon Alloying Additions"
    ], 
    "name": "The Effect of Carbon and Silicon Alloying Additions on the Morphology of Pores and Tensile Characteristics of Sintered Steels", 
    "pagination": "182-188", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1111636771"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s13632-019-00520-9"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s13632-019-00520-9", 
      "https://app.dimensions.ai/details/publication/pub.1111636771"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-12-01T19:46", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_824.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s13632-019-00520-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s13632-019-00520-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s13632-019-00520-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s13632-019-00520-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s13632-019-00520-9'


 

This table displays all metadata directly associated to this object as RDF triples.

144 TRIPLES      22 PREDICATES      82 URIs      71 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s13632-019-00520-9 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N18770f53a82d4ad9ba60f5883a487760
4 schema:citation sg:pub.10.1007/978-3-319-53898-3_2
5 sg:pub.10.1007/s10853-011-6159-3
6 sg:pub.10.1038/srep24326
7 schema:datePublished 2019-01-24
8 schema:datePublishedReg 2019-01-24
9 schema:description The influence of C and Si on pore morphology and tensile behavior of Fe–C–P–Si was investigated. The contribution of C on the morphology of pores was explained using thermodynamic formulation by incorporating the surface curvature effect. Thermodynamic analysis of the pore surface suggests that C is enriched at all regions within the pore whether its convex or concave regions, resulting in C coverage of the surface pore. The C coverage will reduce the surface energy without changing the pore’s morphology. Accordingly, C has no effect on surface rounding of pores. Compacted tensile test specimens of Fe–C–P–Si powder were made to produce elongated pores. Tensile testing shows the effect of the sintered density, microstructure, pore morphology, and grain boundary on the mechanical properties. It was found that ductility is affected by pore morphology and grain boundaries, but UTS is more affected by the sintered density and the matrix microstructure.
10 schema:genre article
11 schema:inLanguage en
12 schema:isAccessibleForFree false
13 schema:isPartOf N3fefdf052aa3456e898cc6471037ba76
14 Na7a7753d527449e3929116fb853b9f74
15 sg:journal.1136434
16 schema:keywords Fe
17 Si
18 Si powder
19 Silicon Alloying Additions
20 UTS
21 addition
22 alloying additions
23 analysis
24 behavior
25 boundaries
26 carbon
27 characteristics
28 concave regions
29 contribution
30 convex
31 coverage
32 curvature effects
33 density
34 ductility
35 effect
36 effect of carbon
37 energy
38 formulation
39 grain boundaries
40 influence
41 matrix microstructure
42 mechanical properties
43 microstructure
44 morphology
45 morphology of pores
46 pore morphology
47 pore surface
48 pores
49 powder
50 properties
51 region
52 rounding
53 sintered density
54 sintered steels
55 specimens
56 steel
57 surface
58 surface curvature effect
59 surface energy
60 surface pores
61 surface rounding
62 tensile behavior
63 tensile characteristics
64 tensile test specimens
65 tensile testing
66 test specimens
67 testing
68 thermodynamic analysis
69 thermodynamic formulation
70 schema:name The Effect of Carbon and Silicon Alloying Additions on the Morphology of Pores and Tensile Characteristics of Sintered Steels
71 schema:pagination 182-188
72 schema:productId N04dc83b28c1f4fcbaf81b23bdd932fc1
73 Na2b9a64638354e92bbd2a6519bcfa3d8
74 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111636771
75 https://doi.org/10.1007/s13632-019-00520-9
76 schema:sdDatePublished 2021-12-01T19:46
77 schema:sdLicense https://scigraph.springernature.com/explorer/license/
78 schema:sdPublisher N461dbf4f5dc74b79b100cd92f0dee514
79 schema:url https://doi.org/10.1007/s13632-019-00520-9
80 sgo:license sg:explorer/license/
81 sgo:sdDataset articles
82 rdf:type schema:ScholarlyArticle
83 N04dc83b28c1f4fcbaf81b23bdd932fc1 schema:name dimensions_id
84 schema:value pub.1111636771
85 rdf:type schema:PropertyValue
86 N18770f53a82d4ad9ba60f5883a487760 rdf:first sg:person.07511044223.47
87 rdf:rest Nd222d8fa10a5446d8618e89d851f1f59
88 N3fefdf052aa3456e898cc6471037ba76 schema:volumeNumber 8
89 rdf:type schema:PublicationVolume
90 N461dbf4f5dc74b79b100cd92f0dee514 schema:name Springer Nature - SN SciGraph project
91 rdf:type schema:Organization
92 N9e08c0570f934696ac9ee77b936d36cb rdf:first sg:person.010243153443.96
93 rdf:rest rdf:nil
94 Na2b9a64638354e92bbd2a6519bcfa3d8 schema:name doi
95 schema:value 10.1007/s13632-019-00520-9
96 rdf:type schema:PropertyValue
97 Na7a7753d527449e3929116fb853b9f74 schema:issueNumber 2
98 rdf:type schema:PublicationIssue
99 Nd222d8fa10a5446d8618e89d851f1f59 rdf:first sg:person.015631573527.33
100 rdf:rest N9e08c0570f934696ac9ee77b936d36cb
101 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
102 schema:name Engineering
103 rdf:type schema:DefinedTerm
104 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
105 schema:name Materials Engineering
106 rdf:type schema:DefinedTerm
107 sg:journal.1136434 schema:issn 2192-9262
108 2192-9270
109 schema:name Metallography, Microstructure, and Analysis
110 schema:publisher Springer Nature
111 rdf:type schema:Periodical
112 sg:person.010243153443.96 schema:affiliation grid-institutes:grid.440896.7
113 schema:familyName Rawashdeh
114 schema:givenName Nathir
115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010243153443.96
116 rdf:type schema:Person
117 sg:person.015631573527.33 schema:affiliation grid-institutes:grid.510262.2
118 schema:familyName Abu Jadayil
119 schema:givenName Wisam
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015631573527.33
121 rdf:type schema:Person
122 sg:person.07511044223.47 schema:affiliation grid-institutes:grid.9670.8
123 schema:familyName Khraisat
124 schema:givenName Walid
125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07511044223.47
126 rdf:type schema:Person
127 sg:pub.10.1007/978-3-319-53898-3_2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090664631
128 https://doi.org/10.1007/978-3-319-53898-3_2
129 rdf:type schema:CreativeWork
130 sg:pub.10.1007/s10853-011-6159-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032888867
131 https://doi.org/10.1007/s10853-011-6159-3
132 rdf:type schema:CreativeWork
133 sg:pub.10.1038/srep24326 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002113197
134 https://doi.org/10.1038/srep24326
135 rdf:type schema:CreativeWork
136 grid-institutes:grid.440896.7 schema:alternateName Mechatronics Engineering Department, German Jordanian University, Amman, Jordan
137 schema:name Mechatronics Engineering Department, German Jordanian University, Amman, Jordan
138 rdf:type schema:Organization
139 grid-institutes:grid.510262.2 schema:alternateName Mechanical and Industrial Engineering Department, The American University of Ras Al Khaimah, Ras Al Khaimah, UAE
140 schema:name Mechanical and Industrial Engineering Department, The American University of Ras Al Khaimah, Ras Al Khaimah, UAE
141 rdf:type schema:Organization
142 grid-institutes:grid.9670.8 schema:alternateName Industrial Engineering Department, The University of Jordan, Amman, Jordan
143 schema:name Industrial Engineering Department, The University of Jordan, Amman, Jordan
144 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...