Optimization of Process Parameters by Taguchi Grey Relational Analysis in Joining Inconel-625 Through Microwave Hybrid Heating View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-02

AUTHORS

Ravindra I. Badiger, S. Narendranath, M. S. Srinath

ABSTRACT

The quality of welded joints developed using microwave hybrid heating (MHH) technique is largely influenced by properties of the constituents employed in the process. This article investigates the influence of process parameters on tensile strength and flexural strength of Inconel-625 plates welded through MHH. Experiments were planned according to Taguchi L16 orthogonal array by considering three factors: separator, susceptor and filler powder particle size. Ultimate tensile strength and flexural strength of the specimens welded at 600 and 900 W were chosen as response characteristics. Application of Taguchi-based GRA has been effectively used to optimize multi-performance characteristics of the process. ANOVA results indicate that size of interface filler powder is the most significant factor in determining the joint strength followed by separator and susceptor. Further to corroborate the optimal parameter setting for maximum strength values, metallurgical characterization of the specimens is carried out through XRD and SEM. Specimens processed at 600 W exhibited superior properties compared to their counterparts developed at 900 W. More... »

PAGES

92-108

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s13632-018-0508-4

DOI

http://dx.doi.org/10.1007/s13632-018-0508-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1110507255


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0904", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "National Institute of Technology Karnataka", 
          "id": "https://www.grid.ac/institutes/grid.444525.6", 
          "name": [
            "Department of Mechanical Engineering, National Institute of Technology Karnataka, Surathkal, Karnataka, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Badiger", 
        "givenName": "Ravindra I.", 
        "id": "sg:person.012765531401.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012765531401.48"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institute of Technology Karnataka", 
          "id": "https://www.grid.ac/institutes/grid.444525.6", 
          "name": [
            "Department of Mechanical Engineering, National Institute of Technology Karnataka, Surathkal, Karnataka, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Narendranath", 
        "givenName": "S.", 
        "id": "sg:person.010401230676.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010401230676.55"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Visvesvaraya Technological University", 
          "id": "https://www.grid.ac/institutes/grid.444321.4", 
          "name": [
            "Department of Industrial and Production Engineering, Malnad College of Engineering, Hassan, Karnataka, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Srinath", 
        "givenName": "M. S.", 
        "id": "sg:person.016407323517.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016407323517.04"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s13632-013-0109-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002276218", 
          "https://doi.org/10.1007/s13632-013-0109-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s13632-013-0109-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002276218", 
          "https://doi.org/10.1007/s13632-013-0109-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmapro.2016.12.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005534178"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00170-015-7373-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010214182", 
          "https://doi.org/10.1007/s00170-015-7373-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmapro.2011.03.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013860325"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1179/136217104225017099", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014395413"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/08327823.2008.11688599", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016608889"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.dt.2016.04.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016808607"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.matdes.2011.04.050", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017303221"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00170-012-4538-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019934256", 
          "https://doi.org/10.1007/s00170-012-4538-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1003-6326(08)60096-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020468248"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00170-014-6665-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020505255", 
          "https://doi.org/10.1007/s00170-014-6665-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.msea.2012.07.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027147664"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.matdes.2011.01.023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029832184"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.measurement.2016.12.024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030421984"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2320/matertrans.47.898", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035987621"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11837-015-1523-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038630565", 
          "https://doi.org/10.1007/s11837-015-1523-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.matdes.2014.02.023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040303026"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jestch.2015.10.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043942425"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.scriptamat.2004.03.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046532824"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0167-577x(01)00653-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047394370"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1179/136217104225021788", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048023424"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1003-6326(11)60738-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048318029"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11661-998-0319-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051386323", 
          "https://doi.org/10.1007/s11661-998-0319-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11661-998-0319-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051386323", 
          "https://doi.org/10.1007/s11661-998-0319-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev.ms.26.080196.001503", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051636518"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.powtec.2014.02.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051725130"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/1464420715589206", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064006487"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/1464420715589206", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064006487"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0954405417697350", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084244677"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0954405417697350", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084244677"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0954405417697350", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084244677"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1003-6326(17)60117-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085964754"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-02", 
    "datePublishedReg": "2019-02-01", 
    "description": "The quality of welded joints developed using microwave hybrid heating (MHH) technique is largely influenced by properties of the constituents employed in the process. This article investigates the influence of process parameters on tensile strength and flexural strength of Inconel-625 plates welded through MHH. Experiments were planned according to Taguchi L16 orthogonal array by considering three factors: separator, susceptor and filler powder particle size. Ultimate tensile strength and flexural strength of the specimens welded at 600 and 900 W were chosen as response characteristics. Application of Taguchi-based GRA has been effectively used to optimize multi-performance characteristics of the process. ANOVA results indicate that size of interface filler powder is the most significant factor in determining the joint strength followed by separator and susceptor. Further to corroborate the optimal parameter setting for maximum strength values, metallurgical characterization of the specimens is carried out through XRD and SEM. Specimens processed at 600 W exhibited superior properties compared to their counterparts developed at 900 W.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s13632-018-0508-4", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136434", 
        "issn": [
          "2192-9262", 
          "2192-9270"
        ], 
        "name": "Metallography, Microstructure, and Analysis", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "8"
      }
    ], 
    "name": "Optimization of Process Parameters by Taguchi Grey Relational Analysis in Joining Inconel-625 Through Microwave Hybrid Heating", 
    "pagination": "92-108", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "08a32784c97fecd9eded2490945ad7d10999129e11c6afcfd17141e7f546f72d"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s13632-018-0508-4"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1110507255"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s13632-018-0508-4", 
      "https://app.dimensions.ai/details/publication/pub.1110507255"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:30", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000346_0000000346/records_99802_00000004.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs13632-018-0508-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s13632-018-0508-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s13632-018-0508-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s13632-018-0508-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s13632-018-0508-4'


 

This table displays all metadata directly associated to this object as RDF triples.

168 TRIPLES      21 PREDICATES      55 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s13632-018-0508-4 schema:about anzsrc-for:09
2 anzsrc-for:0904
3 schema:author N1a694a29a0fe4adf9ee43bb443c961d3
4 schema:citation sg:pub.10.1007/s00170-012-4538-9
5 sg:pub.10.1007/s00170-014-6665-y
6 sg:pub.10.1007/s00170-015-7373-y
7 sg:pub.10.1007/s11661-998-0319-3
8 sg:pub.10.1007/s11837-015-1523-4
9 sg:pub.10.1007/s13632-013-0109-1
10 https://doi.org/10.1016/j.dt.2016.04.001
11 https://doi.org/10.1016/j.jestch.2015.10.003
12 https://doi.org/10.1016/j.jmapro.2011.03.001
13 https://doi.org/10.1016/j.jmapro.2016.12.013
14 https://doi.org/10.1016/j.matdes.2011.01.023
15 https://doi.org/10.1016/j.matdes.2011.04.050
16 https://doi.org/10.1016/j.matdes.2014.02.023
17 https://doi.org/10.1016/j.measurement.2016.12.024
18 https://doi.org/10.1016/j.msea.2012.07.012
19 https://doi.org/10.1016/j.powtec.2014.02.008
20 https://doi.org/10.1016/j.scriptamat.2004.03.017
21 https://doi.org/10.1016/s0167-577x(01)00653-x
22 https://doi.org/10.1016/s1003-6326(08)60096-5
23 https://doi.org/10.1016/s1003-6326(11)60738-3
24 https://doi.org/10.1016/s1003-6326(17)60117-1
25 https://doi.org/10.1080/08327823.2008.11688599
26 https://doi.org/10.1146/annurev.ms.26.080196.001503
27 https://doi.org/10.1177/0954405417697350
28 https://doi.org/10.1177/1464420715589206
29 https://doi.org/10.1179/136217104225017099
30 https://doi.org/10.1179/136217104225021788
31 https://doi.org/10.2320/matertrans.47.898
32 schema:datePublished 2019-02
33 schema:datePublishedReg 2019-02-01
34 schema:description The quality of welded joints developed using microwave hybrid heating (MHH) technique is largely influenced by properties of the constituents employed in the process. This article investigates the influence of process parameters on tensile strength and flexural strength of Inconel-625 plates welded through MHH. Experiments were planned according to Taguchi L16 orthogonal array by considering three factors: separator, susceptor and filler powder particle size. Ultimate tensile strength and flexural strength of the specimens welded at 600 and 900 W were chosen as response characteristics. Application of Taguchi-based GRA has been effectively used to optimize multi-performance characteristics of the process. ANOVA results indicate that size of interface filler powder is the most significant factor in determining the joint strength followed by separator and susceptor. Further to corroborate the optimal parameter setting for maximum strength values, metallurgical characterization of the specimens is carried out through XRD and SEM. Specimens processed at 600 W exhibited superior properties compared to their counterparts developed at 900 W.
35 schema:genre research_article
36 schema:inLanguage en
37 schema:isAccessibleForFree false
38 schema:isPartOf N5365e7a862794aa6b1ff93be9f760d48
39 Na840257db2b0401fbe9d33bc470bc8eb
40 sg:journal.1136434
41 schema:name Optimization of Process Parameters by Taguchi Grey Relational Analysis in Joining Inconel-625 Through Microwave Hybrid Heating
42 schema:pagination 92-108
43 schema:productId N5e3f711bddb64476a33eb5fa371ffc3e
44 N91404f18ef534933981c7e03346cadf7
45 N9ff8f78829af485caca4d6e6b9223e65
46 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110507255
47 https://doi.org/10.1007/s13632-018-0508-4
48 schema:sdDatePublished 2019-04-11T09:30
49 schema:sdLicense https://scigraph.springernature.com/explorer/license/
50 schema:sdPublisher N37d9c6e1a11b4c78b75695bd8418396a
51 schema:url https://link.springer.com/10.1007%2Fs13632-018-0508-4
52 sgo:license sg:explorer/license/
53 sgo:sdDataset articles
54 rdf:type schema:ScholarlyArticle
55 N180454144ead405b954b87c2f3133aad rdf:first sg:person.010401230676.55
56 rdf:rest N18a196b0fa1044e0a246918b50c4f25a
57 N18a196b0fa1044e0a246918b50c4f25a rdf:first sg:person.016407323517.04
58 rdf:rest rdf:nil
59 N1a694a29a0fe4adf9ee43bb443c961d3 rdf:first sg:person.012765531401.48
60 rdf:rest N180454144ead405b954b87c2f3133aad
61 N37d9c6e1a11b4c78b75695bd8418396a schema:name Springer Nature - SN SciGraph project
62 rdf:type schema:Organization
63 N5365e7a862794aa6b1ff93be9f760d48 schema:issueNumber 1
64 rdf:type schema:PublicationIssue
65 N5e3f711bddb64476a33eb5fa371ffc3e schema:name dimensions_id
66 schema:value pub.1110507255
67 rdf:type schema:PropertyValue
68 N91404f18ef534933981c7e03346cadf7 schema:name readcube_id
69 schema:value 08a32784c97fecd9eded2490945ad7d10999129e11c6afcfd17141e7f546f72d
70 rdf:type schema:PropertyValue
71 N9ff8f78829af485caca4d6e6b9223e65 schema:name doi
72 schema:value 10.1007/s13632-018-0508-4
73 rdf:type schema:PropertyValue
74 Na840257db2b0401fbe9d33bc470bc8eb schema:volumeNumber 8
75 rdf:type schema:PublicationVolume
76 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
77 schema:name Engineering
78 rdf:type schema:DefinedTerm
79 anzsrc-for:0904 schema:inDefinedTermSet anzsrc-for:
80 schema:name Chemical Engineering
81 rdf:type schema:DefinedTerm
82 sg:journal.1136434 schema:issn 2192-9262
83 2192-9270
84 schema:name Metallography, Microstructure, and Analysis
85 rdf:type schema:Periodical
86 sg:person.010401230676.55 schema:affiliation https://www.grid.ac/institutes/grid.444525.6
87 schema:familyName Narendranath
88 schema:givenName S.
89 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010401230676.55
90 rdf:type schema:Person
91 sg:person.012765531401.48 schema:affiliation https://www.grid.ac/institutes/grid.444525.6
92 schema:familyName Badiger
93 schema:givenName Ravindra I.
94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012765531401.48
95 rdf:type schema:Person
96 sg:person.016407323517.04 schema:affiliation https://www.grid.ac/institutes/grid.444321.4
97 schema:familyName Srinath
98 schema:givenName M. S.
99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016407323517.04
100 rdf:type schema:Person
101 sg:pub.10.1007/s00170-012-4538-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019934256
102 https://doi.org/10.1007/s00170-012-4538-9
103 rdf:type schema:CreativeWork
104 sg:pub.10.1007/s00170-014-6665-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1020505255
105 https://doi.org/10.1007/s00170-014-6665-y
106 rdf:type schema:CreativeWork
107 sg:pub.10.1007/s00170-015-7373-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1010214182
108 https://doi.org/10.1007/s00170-015-7373-y
109 rdf:type schema:CreativeWork
110 sg:pub.10.1007/s11661-998-0319-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051386323
111 https://doi.org/10.1007/s11661-998-0319-3
112 rdf:type schema:CreativeWork
113 sg:pub.10.1007/s11837-015-1523-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038630565
114 https://doi.org/10.1007/s11837-015-1523-4
115 rdf:type schema:CreativeWork
116 sg:pub.10.1007/s13632-013-0109-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002276218
117 https://doi.org/10.1007/s13632-013-0109-1
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1016/j.dt.2016.04.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016808607
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1016/j.jestch.2015.10.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043942425
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1016/j.jmapro.2011.03.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013860325
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1016/j.jmapro.2016.12.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005534178
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1016/j.matdes.2011.01.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029832184
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1016/j.matdes.2011.04.050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017303221
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1016/j.matdes.2014.02.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040303026
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1016/j.measurement.2016.12.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030421984
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1016/j.msea.2012.07.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027147664
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1016/j.powtec.2014.02.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051725130
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1016/j.scriptamat.2004.03.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046532824
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1016/s0167-577x(01)00653-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1047394370
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1016/s1003-6326(08)60096-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020468248
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1016/s1003-6326(11)60738-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048318029
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1016/s1003-6326(17)60117-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085964754
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1080/08327823.2008.11688599 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016608889
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1146/annurev.ms.26.080196.001503 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051636518
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1177/0954405417697350 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084244677
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1177/1464420715589206 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064006487
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1179/136217104225017099 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014395413
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1179/136217104225021788 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048023424
160 rdf:type schema:CreativeWork
161 https://doi.org/10.2320/matertrans.47.898 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035987621
162 rdf:type schema:CreativeWork
163 https://www.grid.ac/institutes/grid.444321.4 schema:alternateName Visvesvaraya Technological University
164 schema:name Department of Industrial and Production Engineering, Malnad College of Engineering, Hassan, Karnataka, India
165 rdf:type schema:Organization
166 https://www.grid.ac/institutes/grid.444525.6 schema:alternateName National Institute of Technology Karnataka
167 schema:name Department of Mechanical Engineering, National Institute of Technology Karnataka, Surathkal, Karnataka, India
168 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...