Optimization of Process Parameters by Taguchi Grey Relational Analysis in Joining Inconel-625 Through Microwave Hybrid Heating View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-02

AUTHORS

Ravindra I. Badiger, S. Narendranath, M. S. Srinath

ABSTRACT

The quality of welded joints developed using microwave hybrid heating (MHH) technique is largely influenced by properties of the constituents employed in the process. This article investigates the influence of process parameters on tensile strength and flexural strength of Inconel-625 plates welded through MHH. Experiments were planned according to Taguchi L16 orthogonal array by considering three factors: separator, susceptor and filler powder particle size. Ultimate tensile strength and flexural strength of the specimens welded at 600 and 900 W were chosen as response characteristics. Application of Taguchi-based GRA has been effectively used to optimize multi-performance characteristics of the process. ANOVA results indicate that size of interface filler powder is the most significant factor in determining the joint strength followed by separator and susceptor. Further to corroborate the optimal parameter setting for maximum strength values, metallurgical characterization of the specimens is carried out through XRD and SEM. Specimens processed at 600 W exhibited superior properties compared to their counterparts developed at 900 W. More... »

PAGES

92-108

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s13632-018-0508-4

DOI

http://dx.doi.org/10.1007/s13632-018-0508-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1110507255


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0904", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "National Institute of Technology Karnataka", 
          "id": "https://www.grid.ac/institutes/grid.444525.6", 
          "name": [
            "Department of Mechanical Engineering, National Institute of Technology Karnataka, Surathkal, Karnataka, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Badiger", 
        "givenName": "Ravindra I.", 
        "id": "sg:person.012765531401.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012765531401.48"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institute of Technology Karnataka", 
          "id": "https://www.grid.ac/institutes/grid.444525.6", 
          "name": [
            "Department of Mechanical Engineering, National Institute of Technology Karnataka, Surathkal, Karnataka, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Narendranath", 
        "givenName": "S.", 
        "id": "sg:person.010401230676.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010401230676.55"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Visvesvaraya Technological University", 
          "id": "https://www.grid.ac/institutes/grid.444321.4", 
          "name": [
            "Department of Industrial and Production Engineering, Malnad College of Engineering, Hassan, Karnataka, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Srinath", 
        "givenName": "M. S.", 
        "id": "sg:person.016407323517.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016407323517.04"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s13632-013-0109-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002276218", 
          "https://doi.org/10.1007/s13632-013-0109-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s13632-013-0109-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002276218", 
          "https://doi.org/10.1007/s13632-013-0109-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmapro.2016.12.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005534178"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00170-015-7373-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010214182", 
          "https://doi.org/10.1007/s00170-015-7373-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmapro.2011.03.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013860325"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1179/136217104225017099", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014395413"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/08327823.2008.11688599", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016608889"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.dt.2016.04.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016808607"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.matdes.2011.04.050", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017303221"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00170-012-4538-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019934256", 
          "https://doi.org/10.1007/s00170-012-4538-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1003-6326(08)60096-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020468248"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00170-014-6665-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020505255", 
          "https://doi.org/10.1007/s00170-014-6665-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.msea.2012.07.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027147664"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.matdes.2011.01.023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029832184"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.measurement.2016.12.024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030421984"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2320/matertrans.47.898", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035987621"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11837-015-1523-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038630565", 
          "https://doi.org/10.1007/s11837-015-1523-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.matdes.2014.02.023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040303026"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jestch.2015.10.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043942425"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.scriptamat.2004.03.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046532824"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0167-577x(01)00653-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047394370"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1179/136217104225021788", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048023424"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1003-6326(11)60738-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048318029"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11661-998-0319-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051386323", 
          "https://doi.org/10.1007/s11661-998-0319-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11661-998-0319-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051386323", 
          "https://doi.org/10.1007/s11661-998-0319-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev.ms.26.080196.001503", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051636518"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.powtec.2014.02.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051725130"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/1464420715589206", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064006487"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/1464420715589206", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064006487"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0954405417697350", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084244677"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0954405417697350", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084244677"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0954405417697350", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084244677"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1003-6326(17)60117-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085964754"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-02", 
    "datePublishedReg": "2019-02-01", 
    "description": "The quality of welded joints developed using microwave hybrid heating (MHH) technique is largely influenced by properties of the constituents employed in the process. This article investigates the influence of process parameters on tensile strength and flexural strength of Inconel-625 plates welded through MHH. Experiments were planned according to Taguchi L16 orthogonal array by considering three factors: separator, susceptor and filler powder particle size. Ultimate tensile strength and flexural strength of the specimens welded at 600 and 900 W were chosen as response characteristics. Application of Taguchi-based GRA has been effectively used to optimize multi-performance characteristics of the process. ANOVA results indicate that size of interface filler powder is the most significant factor in determining the joint strength followed by separator and susceptor. Further to corroborate the optimal parameter setting for maximum strength values, metallurgical characterization of the specimens is carried out through XRD and SEM. Specimens processed at 600 W exhibited superior properties compared to their counterparts developed at 900 W.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s13632-018-0508-4", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136434", 
        "issn": [
          "2192-9262", 
          "2192-9270"
        ], 
        "name": "Metallography, Microstructure, and Analysis", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "8"
      }
    ], 
    "name": "Optimization of Process Parameters by Taguchi Grey Relational Analysis in Joining Inconel-625 Through Microwave Hybrid Heating", 
    "pagination": "92-108", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "08a32784c97fecd9eded2490945ad7d10999129e11c6afcfd17141e7f546f72d"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s13632-018-0508-4"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1110507255"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s13632-018-0508-4", 
      "https://app.dimensions.ai/details/publication/pub.1110507255"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:30", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000346_0000000346/records_99802_00000004.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs13632-018-0508-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s13632-018-0508-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s13632-018-0508-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s13632-018-0508-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s13632-018-0508-4'


 

This table displays all metadata directly associated to this object as RDF triples.

168 TRIPLES      21 PREDICATES      55 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s13632-018-0508-4 schema:about anzsrc-for:09
2 anzsrc-for:0904
3 schema:author N8eae2accecb44ab0979ed9df3c0ddce6
4 schema:citation sg:pub.10.1007/s00170-012-4538-9
5 sg:pub.10.1007/s00170-014-6665-y
6 sg:pub.10.1007/s00170-015-7373-y
7 sg:pub.10.1007/s11661-998-0319-3
8 sg:pub.10.1007/s11837-015-1523-4
9 sg:pub.10.1007/s13632-013-0109-1
10 https://doi.org/10.1016/j.dt.2016.04.001
11 https://doi.org/10.1016/j.jestch.2015.10.003
12 https://doi.org/10.1016/j.jmapro.2011.03.001
13 https://doi.org/10.1016/j.jmapro.2016.12.013
14 https://doi.org/10.1016/j.matdes.2011.01.023
15 https://doi.org/10.1016/j.matdes.2011.04.050
16 https://doi.org/10.1016/j.matdes.2014.02.023
17 https://doi.org/10.1016/j.measurement.2016.12.024
18 https://doi.org/10.1016/j.msea.2012.07.012
19 https://doi.org/10.1016/j.powtec.2014.02.008
20 https://doi.org/10.1016/j.scriptamat.2004.03.017
21 https://doi.org/10.1016/s0167-577x(01)00653-x
22 https://doi.org/10.1016/s1003-6326(08)60096-5
23 https://doi.org/10.1016/s1003-6326(11)60738-3
24 https://doi.org/10.1016/s1003-6326(17)60117-1
25 https://doi.org/10.1080/08327823.2008.11688599
26 https://doi.org/10.1146/annurev.ms.26.080196.001503
27 https://doi.org/10.1177/0954405417697350
28 https://doi.org/10.1177/1464420715589206
29 https://doi.org/10.1179/136217104225017099
30 https://doi.org/10.1179/136217104225021788
31 https://doi.org/10.2320/matertrans.47.898
32 schema:datePublished 2019-02
33 schema:datePublishedReg 2019-02-01
34 schema:description The quality of welded joints developed using microwave hybrid heating (MHH) technique is largely influenced by properties of the constituents employed in the process. This article investigates the influence of process parameters on tensile strength and flexural strength of Inconel-625 plates welded through MHH. Experiments were planned according to Taguchi L16 orthogonal array by considering three factors: separator, susceptor and filler powder particle size. Ultimate tensile strength and flexural strength of the specimens welded at 600 and 900 W were chosen as response characteristics. Application of Taguchi-based GRA has been effectively used to optimize multi-performance characteristics of the process. ANOVA results indicate that size of interface filler powder is the most significant factor in determining the joint strength followed by separator and susceptor. Further to corroborate the optimal parameter setting for maximum strength values, metallurgical characterization of the specimens is carried out through XRD and SEM. Specimens processed at 600 W exhibited superior properties compared to their counterparts developed at 900 W.
35 schema:genre research_article
36 schema:inLanguage en
37 schema:isAccessibleForFree false
38 schema:isPartOf N2825e38ffc2c4e5eb77803173b6ca6eb
39 N7ecc4899dfa1403db2b71e828778e615
40 sg:journal.1136434
41 schema:name Optimization of Process Parameters by Taguchi Grey Relational Analysis in Joining Inconel-625 Through Microwave Hybrid Heating
42 schema:pagination 92-108
43 schema:productId N06cbfeb4155e45f6997a0a8c0e9eeaf5
44 N7e8579b13c0246e78b55ab90a3062828
45 N9e233852912f4c9aa2eb6c53506854b7
46 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110507255
47 https://doi.org/10.1007/s13632-018-0508-4
48 schema:sdDatePublished 2019-04-11T09:30
49 schema:sdLicense https://scigraph.springernature.com/explorer/license/
50 schema:sdPublisher N5920e131d5e04e4392fe07c8c08d0695
51 schema:url https://link.springer.com/10.1007%2Fs13632-018-0508-4
52 sgo:license sg:explorer/license/
53 sgo:sdDataset articles
54 rdf:type schema:ScholarlyArticle
55 N06cbfeb4155e45f6997a0a8c0e9eeaf5 schema:name doi
56 schema:value 10.1007/s13632-018-0508-4
57 rdf:type schema:PropertyValue
58 N0bea4bfa8d71437aaae799bca454b6d0 rdf:first sg:person.016407323517.04
59 rdf:rest rdf:nil
60 N2825e38ffc2c4e5eb77803173b6ca6eb schema:issueNumber 1
61 rdf:type schema:PublicationIssue
62 N5920e131d5e04e4392fe07c8c08d0695 schema:name Springer Nature - SN SciGraph project
63 rdf:type schema:Organization
64 N7e8579b13c0246e78b55ab90a3062828 schema:name dimensions_id
65 schema:value pub.1110507255
66 rdf:type schema:PropertyValue
67 N7ecc4899dfa1403db2b71e828778e615 schema:volumeNumber 8
68 rdf:type schema:PublicationVolume
69 N8eae2accecb44ab0979ed9df3c0ddce6 rdf:first sg:person.012765531401.48
70 rdf:rest Nb1522e4d26c844d9842526345b57fc62
71 N9e233852912f4c9aa2eb6c53506854b7 schema:name readcube_id
72 schema:value 08a32784c97fecd9eded2490945ad7d10999129e11c6afcfd17141e7f546f72d
73 rdf:type schema:PropertyValue
74 Nb1522e4d26c844d9842526345b57fc62 rdf:first sg:person.010401230676.55
75 rdf:rest N0bea4bfa8d71437aaae799bca454b6d0
76 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
77 schema:name Engineering
78 rdf:type schema:DefinedTerm
79 anzsrc-for:0904 schema:inDefinedTermSet anzsrc-for:
80 schema:name Chemical Engineering
81 rdf:type schema:DefinedTerm
82 sg:journal.1136434 schema:issn 2192-9262
83 2192-9270
84 schema:name Metallography, Microstructure, and Analysis
85 rdf:type schema:Periodical
86 sg:person.010401230676.55 schema:affiliation https://www.grid.ac/institutes/grid.444525.6
87 schema:familyName Narendranath
88 schema:givenName S.
89 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010401230676.55
90 rdf:type schema:Person
91 sg:person.012765531401.48 schema:affiliation https://www.grid.ac/institutes/grid.444525.6
92 schema:familyName Badiger
93 schema:givenName Ravindra I.
94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012765531401.48
95 rdf:type schema:Person
96 sg:person.016407323517.04 schema:affiliation https://www.grid.ac/institutes/grid.444321.4
97 schema:familyName Srinath
98 schema:givenName M. S.
99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016407323517.04
100 rdf:type schema:Person
101 sg:pub.10.1007/s00170-012-4538-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019934256
102 https://doi.org/10.1007/s00170-012-4538-9
103 rdf:type schema:CreativeWork
104 sg:pub.10.1007/s00170-014-6665-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1020505255
105 https://doi.org/10.1007/s00170-014-6665-y
106 rdf:type schema:CreativeWork
107 sg:pub.10.1007/s00170-015-7373-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1010214182
108 https://doi.org/10.1007/s00170-015-7373-y
109 rdf:type schema:CreativeWork
110 sg:pub.10.1007/s11661-998-0319-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051386323
111 https://doi.org/10.1007/s11661-998-0319-3
112 rdf:type schema:CreativeWork
113 sg:pub.10.1007/s11837-015-1523-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038630565
114 https://doi.org/10.1007/s11837-015-1523-4
115 rdf:type schema:CreativeWork
116 sg:pub.10.1007/s13632-013-0109-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002276218
117 https://doi.org/10.1007/s13632-013-0109-1
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1016/j.dt.2016.04.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016808607
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1016/j.jestch.2015.10.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043942425
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1016/j.jmapro.2011.03.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013860325
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1016/j.jmapro.2016.12.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005534178
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1016/j.matdes.2011.01.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029832184
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1016/j.matdes.2011.04.050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017303221
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1016/j.matdes.2014.02.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040303026
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1016/j.measurement.2016.12.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030421984
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1016/j.msea.2012.07.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027147664
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1016/j.powtec.2014.02.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051725130
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1016/j.scriptamat.2004.03.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046532824
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1016/s0167-577x(01)00653-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1047394370
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1016/s1003-6326(08)60096-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020468248
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1016/s1003-6326(11)60738-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048318029
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1016/s1003-6326(17)60117-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085964754
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1080/08327823.2008.11688599 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016608889
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1146/annurev.ms.26.080196.001503 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051636518
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1177/0954405417697350 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084244677
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1177/1464420715589206 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064006487
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1179/136217104225017099 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014395413
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1179/136217104225021788 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048023424
160 rdf:type schema:CreativeWork
161 https://doi.org/10.2320/matertrans.47.898 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035987621
162 rdf:type schema:CreativeWork
163 https://www.grid.ac/institutes/grid.444321.4 schema:alternateName Visvesvaraya Technological University
164 schema:name Department of Industrial and Production Engineering, Malnad College of Engineering, Hassan, Karnataka, India
165 rdf:type schema:Organization
166 https://www.grid.ac/institutes/grid.444525.6 schema:alternateName National Institute of Technology Karnataka
167 schema:name Department of Mechanical Engineering, National Institute of Technology Karnataka, Surathkal, Karnataka, India
168 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...