Blood gas analyzer and central laboratory glucose, sodium, potassium, lactate and hemoglobin values: differences between methods and their effect on ... View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2016-02-24

AUTHORS

Elisabetta Stenner, Livio Gon, Lorella Dreas, Soraia Soares, Maurizio Novacco, Nicole West, Elisabetta Gianoli, Giorgio Paladini

ABSTRACT

Background.For critical ill patients, the use of a blood gas analyzer (BGA) rather than central laboratory instruments (CL) for biochemical and hematological parameters is common due to more convenient monitoring. Potential significant differences between the methods could be misleading. This study aimed to confirm the agreement between the BGA and CL results and to analyze the effects of inter-methods bias on medical decisions.Methods.Blood samples from arterial lines were collected in the Cardio Surgical Intensive Care Unit simultaneously for gas analyses (RapidPoint 500, Siemens, Erlangen, Germania) and CL (D×C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$D{\times}C$\end{document} 880i and D×H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$D{\times} H$\end{document} 800 (Beckman Coulter, Fullerton, CA, USA) determinations. Methods were compared using Passing-Bablok (PB) regression and Bland Altman analysis. Positive and negative false results of the BGA tests were calculated considering the reference CL tests at critical values for glucose (70, 150 and 180 mg/dL), hemoglobin (7 and 10 g/dL), potassium (3.5–5 mEq/L), sodium (135–145 mEq/L) and lactate (6.5–19.3 mg/dL).Results.PB regression did not show a significant deviation from linearity for all of the parameters; proportional and constant differences were observed for hemoglobin, potassium, and lactate. Intercept and slope of sodium and glucose regression line were significantly different from zero and one respectively. Only the potassium, lactate, and glucose bias estimations were acceptable. However, for hemoglobin it was possible to significantly lower negative false results using PB transformed data.Conclusions.Only the glucose, potassium and lactate results, using both methods, were interchangeable; however the hemoglobin adjustment of BGA values based on PB regression might represent a safer solution. More... »

PAGES

49-53

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s13631-016-0111-0

DOI

http://dx.doi.org/10.1007/s13631-016-0111-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1019790518


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Laboratory Department, A.O.U. Ospedali Riuniti di Trieste, Trieste, Italy", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Laboratory Department, A.O.U. Ospedali Riuniti di Trieste, Trieste, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Stenner", 
        "givenName": "Elisabetta", 
        "id": "sg:person.01243213153.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01243213153.51"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Cardiovascular Department, A.O.U. Ospedali Riuniti di Trieste, Trieste, Italy", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Cardiovascular Department, A.O.U. Ospedali Riuniti di Trieste, Trieste, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gon", 
        "givenName": "Livio", 
        "id": "sg:person.01053700703.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01053700703.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Cardiovascular Department, A.O.U. Ospedali Riuniti di Trieste, Trieste, Italy", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Cardiovascular Department, A.O.U. Ospedali Riuniti di Trieste, Trieste, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dreas", 
        "givenName": "Lorella", 
        "id": "sg:person.0752614301.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0752614301.22"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Laboratory Department, A.O.U. Ospedali Riuniti di Trieste, Trieste, Italy", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Laboratory Department, A.O.U. Ospedali Riuniti di Trieste, Trieste, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Soares", 
        "givenName": "Soraia", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Laboratory Department, A.O.U. Ospedali Riuniti di Trieste, Trieste, Italy", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Laboratory Department, A.O.U. Ospedali Riuniti di Trieste, Trieste, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Novacco", 
        "givenName": "Maurizio", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Laboratory Department, A.O.U. Ospedali Riuniti di Trieste, Trieste, Italy", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Laboratory Department, A.O.U. Ospedali Riuniti di Trieste, Trieste, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "West", 
        "givenName": "Nicole", 
        "id": "sg:person.015517557647.64", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015517557647.64"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Laboratory Department, A.O.U. Ospedali Riuniti di Trieste, Trieste, Italy", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Laboratory Department, A.O.U. Ospedali Riuniti di Trieste, Trieste, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gianoli", 
        "givenName": "Elisabetta", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Clinical Hematology, A.O.U. Ospedali Riuniti di Trieste, Trieste, Italy", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Department of Clinical Hematology, A.O.U. Ospedali Riuniti di Trieste, Trieste, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Paladini", 
        "givenName": "Giorgio", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1186/1471-2253-12-17", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026167670", 
          "https://doi.org/10.1186/1471-2253-12-17"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-02-24", 
    "datePublishedReg": "2016-02-24", 
    "description": "Background.For critical ill patients, the use of a blood gas analyzer (BGA) rather than central laboratory instruments (CL) for biochemical and hematological parameters is common due to more convenient monitoring. Potential significant differences between the methods could be misleading. This study aimed to confirm the agreement between the BGA and CL results and to analyze the effects of inter-methods bias on medical decisions.Methods.Blood samples from arterial lines were collected in the Cardio Surgical Intensive Care Unit simultaneously for gas analyses (RapidPoint 500, Siemens, Erlangen, Germania) and CL (D\u00d7C\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$D{\\times}C$\\end{document}\u00a0880i and D\u00d7H\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$D{\\times} H$\\end{document} 800 (Beckman Coulter, Fullerton, CA, USA) determinations. Methods were compared using Passing-Bablok (PB) regression and Bland Altman analysis. Positive and negative false results of the BGA tests were calculated considering the reference CL tests at critical values for glucose (70, 150 and 180\u00a0mg/dL), hemoglobin (7 and 10\u00a0g/dL), potassium (3.5\u20135 mEq/L), sodium (135\u2013145\u00a0mEq/L) and lactate (6.5\u201319.3\u00a0mg/dL).Results.PB regression did not show a significant deviation from linearity for all of the parameters; proportional and constant differences were observed for hemoglobin, potassium, and lactate. Intercept and slope of sodium and glucose regression line were significantly different from zero and one respectively. Only the potassium, lactate, and glucose bias estimations were acceptable. However, for hemoglobin it was possible to significantly lower negative false results using PB transformed data.Conclusions.Only the glucose, potassium and lactate results, using both methods, were interchangeable; however the hemoglobin adjustment of BGA values based on PB regression might represent a safer solution.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s13631-016-0111-0", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1029613", 
        "issn": [
          "1825-859X", 
          "2039-6821"
        ], 
        "name": "La Rivista Italiana della Medicina di Laboratorio - Italian Journal of Laboratory Medicine", 
        "publisher": "Edizioni Minerva Medica", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "12"
      }
    ], 
    "keywords": [
      "central laboratory instruments", 
      "blood gas analyzer", 
      "surgical intensive care unit", 
      "critical ill patients", 
      "intensive care unit", 
      "ill patients", 
      "care unit", 
      "arterial line", 
      "hematological parameters", 
      "blood samples", 
      "significant differences", 
      "medical decisions", 
      "inter-method bias", 
      "gas analysis", 
      "patients", 
      "potential significant differences", 
      "convenient monitoring", 
      "differences", 
      "study", 
      "effect", 
      "gas analyzer", 
      "monitoring", 
      "use", 
      "samples", 
      "lines", 
      "bias", 
      "units", 
      "analysis", 
      "instrument", 
      "decisions", 
      "laboratory instruments", 
      "method", 
      "analyzer", 
      "parameters", 
      "agreement"
    ], 
    "name": "Blood gas analyzer and central laboratory glucose, sodium, potassium, lactate and hemoglobin values: differences between methods and their effect on medical outcome", 
    "pagination": "49-53", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1019790518"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s13631-016-0111-0"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s13631-016-0111-0", 
      "https://app.dimensions.ai/details/publication/pub.1019790518"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-20T07:31", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_687.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s13631-016-0111-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s13631-016-0111-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s13631-016-0111-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s13631-016-0111-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s13631-016-0111-0'


 

This table displays all metadata directly associated to this object as RDF triples.

146 TRIPLES      22 PREDICATES      61 URIs      52 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s13631-016-0111-0 schema:about anzsrc-for:11
2 anzsrc-for:1103
3 schema:author N1a741f008dfa49869b03d91eb5040cd3
4 schema:citation sg:pub.10.1186/1471-2253-12-17
5 schema:datePublished 2016-02-24
6 schema:datePublishedReg 2016-02-24
7 schema:description Background.For critical ill patients, the use of a blood gas analyzer (BGA) rather than central laboratory instruments (CL) for biochemical and hematological parameters is common due to more convenient monitoring. Potential significant differences between the methods could be misleading. This study aimed to confirm the agreement between the BGA and CL results and to analyze the effects of inter-methods bias on medical decisions.Methods.Blood samples from arterial lines were collected in the Cardio Surgical Intensive Care Unit simultaneously for gas analyses (RapidPoint 500, Siemens, Erlangen, Germania) and CL (D×C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$D{\times}C$\end{document} 880i and D×H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$D{\times} H$\end{document} 800 (Beckman Coulter, Fullerton, CA, USA) determinations. Methods were compared using Passing-Bablok (PB) regression and Bland Altman analysis. Positive and negative false results of the BGA tests were calculated considering the reference CL tests at critical values for glucose (70, 150 and 180 mg/dL), hemoglobin (7 and 10 g/dL), potassium (3.5–5 mEq/L), sodium (135–145 mEq/L) and lactate (6.5–19.3 mg/dL).Results.PB regression did not show a significant deviation from linearity for all of the parameters; proportional and constant differences were observed for hemoglobin, potassium, and lactate. Intercept and slope of sodium and glucose regression line were significantly different from zero and one respectively. Only the potassium, lactate, and glucose bias estimations were acceptable. However, for hemoglobin it was possible to significantly lower negative false results using PB transformed data.Conclusions.Only the glucose, potassium and lactate results, using both methods, were interchangeable; however the hemoglobin adjustment of BGA values based on PB regression might represent a safer solution.
8 schema:genre article
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N23f1443cc5554534a36feb72bb01a2bf
12 Nd7182d351bf2429eb8e8439ee8635cd2
13 sg:journal.1029613
14 schema:keywords agreement
15 analysis
16 analyzer
17 arterial line
18 bias
19 blood gas analyzer
20 blood samples
21 care unit
22 central laboratory instruments
23 convenient monitoring
24 critical ill patients
25 decisions
26 differences
27 effect
28 gas analysis
29 gas analyzer
30 hematological parameters
31 ill patients
32 instrument
33 intensive care unit
34 inter-method bias
35 laboratory instruments
36 lines
37 medical decisions
38 method
39 monitoring
40 parameters
41 patients
42 potential significant differences
43 samples
44 significant differences
45 study
46 surgical intensive care unit
47 units
48 use
49 schema:name Blood gas analyzer and central laboratory glucose, sodium, potassium, lactate and hemoglobin values: differences between methods and their effect on medical outcome
50 schema:pagination 49-53
51 schema:productId N1807fd8905284f2bb00935a130505d45
52 N43329ffa990f4747abcb4a6202161743
53 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019790518
54 https://doi.org/10.1007/s13631-016-0111-0
55 schema:sdDatePublished 2022-05-20T07:31
56 schema:sdLicense https://scigraph.springernature.com/explorer/license/
57 schema:sdPublisher N499ff46aee6949e2b4ca018f9ae7ef2f
58 schema:url https://doi.org/10.1007/s13631-016-0111-0
59 sgo:license sg:explorer/license/
60 sgo:sdDataset articles
61 rdf:type schema:ScholarlyArticle
62 N10a75b70077440c3b243a14f49e13e5c schema:affiliation grid-institutes:None
63 schema:familyName Paladini
64 schema:givenName Giorgio
65 rdf:type schema:Person
66 N1807fd8905284f2bb00935a130505d45 schema:name dimensions_id
67 schema:value pub.1019790518
68 rdf:type schema:PropertyValue
69 N1a741f008dfa49869b03d91eb5040cd3 rdf:first sg:person.01243213153.51
70 rdf:rest N92a1ada2f2a24724a2fbb026db03b0e8
71 N23f1443cc5554534a36feb72bb01a2bf schema:volumeNumber 12
72 rdf:type schema:PublicationVolume
73 N2e834c3e22f34006ba276c5913fb49ff rdf:first sg:person.0752614301.22
74 rdf:rest N495aca2c1a224e95963529364f369012
75 N32bf70a4683c456c8269b19c08181e2d rdf:first N96437630da6b499aad26a3251056aa3e
76 rdf:rest N73ace651381d49dbbf43aad26e6f7e1a
77 N43329ffa990f4747abcb4a6202161743 schema:name doi
78 schema:value 10.1007/s13631-016-0111-0
79 rdf:type schema:PropertyValue
80 N495aca2c1a224e95963529364f369012 rdf:first Nb6edb2b6a5544bdea579e4dbdbffc3ca
81 rdf:rest N6468b2fb6384481194a49b299d132388
82 N499ff46aee6949e2b4ca018f9ae7ef2f schema:name Springer Nature - SN SciGraph project
83 rdf:type schema:Organization
84 N6468b2fb6384481194a49b299d132388 rdf:first Na161594fb7cc488a96954b53cd215a15
85 rdf:rest Na587e5ef66b54e1ca361621bbe089576
86 N73ace651381d49dbbf43aad26e6f7e1a rdf:first N10a75b70077440c3b243a14f49e13e5c
87 rdf:rest rdf:nil
88 N92a1ada2f2a24724a2fbb026db03b0e8 rdf:first sg:person.01053700703.38
89 rdf:rest N2e834c3e22f34006ba276c5913fb49ff
90 N96437630da6b499aad26a3251056aa3e schema:affiliation grid-institutes:None
91 schema:familyName Gianoli
92 schema:givenName Elisabetta
93 rdf:type schema:Person
94 Na161594fb7cc488a96954b53cd215a15 schema:affiliation grid-institutes:None
95 schema:familyName Novacco
96 schema:givenName Maurizio
97 rdf:type schema:Person
98 Na587e5ef66b54e1ca361621bbe089576 rdf:first sg:person.015517557647.64
99 rdf:rest N32bf70a4683c456c8269b19c08181e2d
100 Nb6edb2b6a5544bdea579e4dbdbffc3ca schema:affiliation grid-institutes:None
101 schema:familyName Soares
102 schema:givenName Soraia
103 rdf:type schema:Person
104 Nd7182d351bf2429eb8e8439ee8635cd2 schema:issueNumber 1
105 rdf:type schema:PublicationIssue
106 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
107 schema:name Medical and Health Sciences
108 rdf:type schema:DefinedTerm
109 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
110 schema:name Clinical Sciences
111 rdf:type schema:DefinedTerm
112 sg:journal.1029613 schema:issn 1825-859X
113 2039-6821
114 schema:name La Rivista Italiana della Medicina di Laboratorio - Italian Journal of Laboratory Medicine
115 schema:publisher Edizioni Minerva Medica
116 rdf:type schema:Periodical
117 sg:person.01053700703.38 schema:affiliation grid-institutes:None
118 schema:familyName Gon
119 schema:givenName Livio
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01053700703.38
121 rdf:type schema:Person
122 sg:person.01243213153.51 schema:affiliation grid-institutes:None
123 schema:familyName Stenner
124 schema:givenName Elisabetta
125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01243213153.51
126 rdf:type schema:Person
127 sg:person.015517557647.64 schema:affiliation grid-institutes:None
128 schema:familyName West
129 schema:givenName Nicole
130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015517557647.64
131 rdf:type schema:Person
132 sg:person.0752614301.22 schema:affiliation grid-institutes:None
133 schema:familyName Dreas
134 schema:givenName Lorella
135 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0752614301.22
136 rdf:type schema:Person
137 sg:pub.10.1186/1471-2253-12-17 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026167670
138 https://doi.org/10.1186/1471-2253-12-17
139 rdf:type schema:CreativeWork
140 grid-institutes:None schema:alternateName Cardiovascular Department, A.O.U. Ospedali Riuniti di Trieste, Trieste, Italy
141 Department of Clinical Hematology, A.O.U. Ospedali Riuniti di Trieste, Trieste, Italy
142 Laboratory Department, A.O.U. Ospedali Riuniti di Trieste, Trieste, Italy
143 schema:name Cardiovascular Department, A.O.U. Ospedali Riuniti di Trieste, Trieste, Italy
144 Department of Clinical Hematology, A.O.U. Ospedali Riuniti di Trieste, Trieste, Italy
145 Laboratory Department, A.O.U. Ospedali Riuniti di Trieste, Trieste, Italy
146 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...