Life after disturbance (II): the intermediate disturbance hypothesis explains genetic variation in forest gaps dominated by Virola michelii Heckel (Myristicaceae) View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2015-10-12

AUTHORS

Ivan Scotti, William Montaigne, Klára Cseke, Stéphane Traissac

ABSTRACT

Key messageGenetic diversity appears to be unaffected by disturbance in a stand of the light-demanding Neotropical treeV. michelii. Although spatial genetic structure is modified in post-disturbance cohorts, mixing of seeds from different mother trees in canopy gaps appears to efficiently maintain genetic admixture.ContextThe interplay between genetic and demographic processes has major consequences on population viability. Population size affects demographic trends, while genetic diversity insures viability by reducing risks of inbreeding depression and by maintaining adaptive potential. Yet, the consequences of increases in census size (as opposed to effective size) on genetic diversity of forest populations are poorly known.AimsWe have studied the structure of genetic diversity in populations of saplings of the light-responsive tree, Virola michelii (Myristicaceae, the nutmeg family), in two plots having undergone different levels of canopy-gap opening disturbance. This allowed us to test the “intermediate disturbance” hypothesis, which generally applies to species diversity, at the intra-specific scale.MethodsLevels and distribution of genetic diversity were compared between plots and between life stages. Sapling parentage was analysed to infer each adult tree’s contribution to regeneration.ResultsGenetic diversity was higher, and spatial genetic structure was stronger in the post-disturbance than in the control seedling population. Parentage analysis suggested that a limited number of parents contributed to most of the regeneration, but that efficient mixing of their progeny may have enhanced the diversity of saplings occupying canopy gaps.ConclusionA mixture of demo-genetic processes may contribute to maintain genetic diversity in spite of, or possibly due to, ecosystem disturbance in V. michelii. More... »

PAGES

1035-1042

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s13595-015-0508-3

DOI

http://dx.doi.org/10.1007/s13595-015-0508-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1001379897


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/07", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Agricultural and Veterinary Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0705", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Forestry Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "INRA, UR629 \u00ab Ecologie des For\u00eats M\u00e9diterran\u00e9ennes \u00bb (URFM), Agroparc, Domaine Saint Paul, 84914, Avignon Cedex 9, France", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "INRA, UR629 \u00ab Ecologie des For\u00eats M\u00e9diterran\u00e9ennes \u00bb (URFM), Agroparc, Domaine Saint Paul, 84914, Avignon Cedex 9, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Scotti", 
        "givenName": "Ivan", 
        "id": "sg:person.01032345662.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01032345662.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Solicaz, Guyane Technop\u00f4le, 16 bis Rue du 14 Juillet, 97300, Cayenne, French Guiana", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Universit\u00e9 des Antilles et de la Guyane, Unit\u00e9 Mixte de Recherche \u00ab Ecologie des For\u00eats de Guyane \u00bb (EcoFoG), Campus Agronomique, BP 709, 97387, Kourou, French Guiana", 
            "Solicaz, Guyane Technop\u00f4le, 16 bis Rue du 14 Juillet, 97300, Cayenne, French Guiana"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Montaigne", 
        "givenName": "William", 
        "id": "sg:person.013311223257.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013311223257.18"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Forest Tree Breeding, Experiment Station and Arboretum, Forest Research Institute, V\u00e1rker\u00fclet 30/A, 9600, S\u00e1rv\u00e1r, Hungary", 
          "id": "http://www.grid.ac/institutes/grid.481832.4", 
          "name": [
            "Department of Forest Tree Breeding, Experiment Station and Arboretum, Forest Research Institute, V\u00e1rker\u00fclet 30/A, 9600, S\u00e1rv\u00e1r, Hungary"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cseke", 
        "givenName": "Kl\u00e1ra", 
        "id": "sg:person.0717320463.89", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0717320463.89"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "AgroParisTech, Unit\u00e9 Mixte de Recherche \u00ab Ecologie des For\u00eats de Guyane \u00bb (EcoFoG), Campus Agronomique, BP 709, 97387, Kourou, French Guiana", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "AgroParisTech, Unit\u00e9 Mixte de Recherche \u00ab Ecologie des For\u00eats de Guyane \u00bb (EcoFoG), Campus Agronomique, BP 709, 97387, Kourou, French Guiana"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Traissac", 
        "givenName": "St\u00e9phane", 
        "id": "sg:person.015351344143.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015351344143.09"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s12042-010-9040-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046879217", 
          "https://doi.org/10.1007/s12042-010-9040-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00180-007-0072-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016990478", 
          "https://doi.org/10.1007/s00180-007-0072-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s13595-013-0302-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050265193", 
          "https://doi.org/10.1007/s13595-013-0302-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.hdy.6800804", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024779720", 
          "https://doi.org/10.1038/sj.hdy.6800804"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00389011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045899847", 
          "https://doi.org/10.1007/bf00389011"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-9-539", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049532772", 
          "https://doi.org/10.1186/1471-2105-9-539"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1046/j.1365-2540.2001.00942.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012575233", 
          "https://doi.org/10.1046/j.1365-2540.2001.00942.x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00320622", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038784084", 
          "https://doi.org/10.1007/bf00320622"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/242344a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018971302", 
          "https://doi.org/10.1038/242344a0"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-10-12", 
    "datePublishedReg": "2015-10-12", 
    "description": "Key messageGenetic diversity appears to be unaffected by disturbance in a stand of the light-demanding Neotropical treeV. michelii. Although spatial genetic structure is modified in post-disturbance cohorts, mixing of seeds from different mother trees in canopy gaps appears to efficiently maintain genetic admixture.ContextThe interplay between genetic and demographic processes has major consequences on population viability. Population size affects demographic trends, while genetic diversity insures viability by reducing risks of inbreeding depression and by maintaining adaptive potential. Yet, the consequences of increases in census size (as opposed to effective size) on genetic diversity of forest populations are poorly known.AimsWe have studied the structure of genetic diversity in populations of saplings of the light-responsive tree, Virola michelii (Myristicaceae, the nutmeg family), in two plots having undergone different levels of canopy-gap opening disturbance. This allowed us to test the \u201cintermediate disturbance\u201d hypothesis, which generally applies to species diversity, at the intra-specific scale.MethodsLevels and distribution of genetic diversity were compared between plots and between life stages. Sapling parentage was analysed to infer each adult tree\u2019s contribution to regeneration.ResultsGenetic diversity was higher, and spatial genetic structure was stronger in the post-disturbance than in the control seedling population. Parentage analysis suggested that a limited number of parents contributed to most of the regeneration, but that efficient mixing of their progeny may have enhanced the diversity of saplings occupying canopy gaps.ConclusionA mixture of demo-genetic processes may contribute to maintain genetic diversity in spite of, or possibly due to, ecosystem disturbance in V. michelii.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s13595-015-0508-3", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1034834", 
        "issn": [
          "1286-4560", 
          "1297-966X"
        ], 
        "name": "Annals of Forest Science", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "8", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "72"
      }
    ], 
    "keywords": [
      "spatial genetic structure", 
      "genetic diversity", 
      "genetic structure", 
      "canopy gaps", 
      "different mother trees", 
      "diversity of saplings", 
      "population of saplings", 
      "intermediate disturbance hypothesis", 
      "intra-specific scale", 
      "census size", 
      "adaptive potential", 
      "forest populations", 
      "population viability", 
      "parentage analysis", 
      "genetic variation", 
      "mother trees", 
      "forest gaps", 
      "disturbance hypothesis", 
      "genetic admixture", 
      "intermediate disturbance", 
      "ecosystem disturbance", 
      "Virola michelii", 
      "demographic processes", 
      "population size", 
      "life stages", 
      "diversity", 
      "michelii", 
      "saplings", 
      "trees", 
      "major consequences", 
      "regeneration", 
      "progeny", 
      "viability", 
      "seeds", 
      "population", 
      "consequence of increases", 
      "parentage", 
      "limited number", 
      "stands", 
      "tree contribution", 
      "hypothesis", 
      "plots", 
      "different levels", 
      "consequences", 
      "structure", 
      "interplay", 
      "disturbances", 
      "Heckel", 
      "variation", 
      "admixture", 
      "stage", 
      "process", 
      "size", 
      "levels", 
      "potential", 
      "contribution", 
      "analysis", 
      "distribution", 
      "number", 
      "demographic trends", 
      "control", 
      "increase", 
      "spite", 
      "parents", 
      "gap", 
      "scale", 
      "mixture", 
      "trends", 
      "life", 
      "risk", 
      "cohort", 
      "depression", 
      "mixing", 
      "efficient mixing", 
      "Key messageGenetic diversity", 
      "messageGenetic diversity", 
      "light-demanding Neotropical treeV.", 
      "Neotropical treeV.", 
      "treeV.", 
      "post-disturbance cohorts", 
      "ContextThe interplay", 
      "AimsWe", 
      "light-responsive tree", 
      "canopy-gap opening disturbance", 
      "opening disturbance", 
      "MethodsLevels", 
      "Sapling parentage", 
      "adult tree\u2019s contribution", 
      "ResultsGenetic diversity", 
      "demo-genetic processes", 
      "Virola michelii Heckel", 
      "michelii Heckel"
    ], 
    "name": "Life after disturbance (II): the intermediate disturbance hypothesis explains genetic variation in forest gaps dominated by Virola michelii Heckel (Myristicaceae)", 
    "pagination": "1035-1042", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1001379897"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s13595-015-0508-3"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s13595-015-0508-3", 
      "https://app.dimensions.ai/details/publication/pub.1001379897"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-11-01T18:23", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_649.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s13595-015-0508-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s13595-015-0508-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s13595-015-0508-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s13595-015-0508-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s13595-015-0508-3'


 

This table displays all metadata directly associated to this object as RDF triples.

215 TRIPLES      22 PREDICATES      126 URIs      109 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s13595-015-0508-3 schema:about anzsrc-for:07
2 anzsrc-for:0705
3 schema:author Nb30dce0df7d14d2d87cf12f991d249e3
4 schema:citation sg:pub.10.1007/bf00320622
5 sg:pub.10.1007/bf00389011
6 sg:pub.10.1007/s00180-007-0072-x
7 sg:pub.10.1007/s12042-010-9040-7
8 sg:pub.10.1007/s13595-013-0302-z
9 sg:pub.10.1038/242344a0
10 sg:pub.10.1038/sj.hdy.6800804
11 sg:pub.10.1046/j.1365-2540.2001.00942.x
12 sg:pub.10.1186/1471-2105-9-539
13 schema:datePublished 2015-10-12
14 schema:datePublishedReg 2015-10-12
15 schema:description Key messageGenetic diversity appears to be unaffected by disturbance in a stand of the light-demanding Neotropical treeV. michelii. Although spatial genetic structure is modified in post-disturbance cohorts, mixing of seeds from different mother trees in canopy gaps appears to efficiently maintain genetic admixture.ContextThe interplay between genetic and demographic processes has major consequences on population viability. Population size affects demographic trends, while genetic diversity insures viability by reducing risks of inbreeding depression and by maintaining adaptive potential. Yet, the consequences of increases in census size (as opposed to effective size) on genetic diversity of forest populations are poorly known.AimsWe have studied the structure of genetic diversity in populations of saplings of the light-responsive tree, Virola michelii (Myristicaceae, the nutmeg family), in two plots having undergone different levels of canopy-gap opening disturbance. This allowed us to test the “intermediate disturbance” hypothesis, which generally applies to species diversity, at the intra-specific scale.MethodsLevels and distribution of genetic diversity were compared between plots and between life stages. Sapling parentage was analysed to infer each adult tree’s contribution to regeneration.ResultsGenetic diversity was higher, and spatial genetic structure was stronger in the post-disturbance than in the control seedling population. Parentage analysis suggested that a limited number of parents contributed to most of the regeneration, but that efficient mixing of their progeny may have enhanced the diversity of saplings occupying canopy gaps.ConclusionA mixture of demo-genetic processes may contribute to maintain genetic diversity in spite of, or possibly due to, ecosystem disturbance in V. michelii.
16 schema:genre article
17 schema:inLanguage en
18 schema:isAccessibleForFree true
19 schema:isPartOf N6dd3e46a7d474ce8abbcd2299035db9b
20 N816c2643fec04b8c9a690f904c462039
21 sg:journal.1034834
22 schema:keywords AimsWe
23 ContextThe interplay
24 Heckel
25 Key messageGenetic diversity
26 MethodsLevels
27 Neotropical treeV.
28 ResultsGenetic diversity
29 Sapling parentage
30 Virola michelii
31 Virola michelii Heckel
32 adaptive potential
33 admixture
34 adult tree’s contribution
35 analysis
36 canopy gaps
37 canopy-gap opening disturbance
38 census size
39 cohort
40 consequence of increases
41 consequences
42 contribution
43 control
44 demo-genetic processes
45 demographic processes
46 demographic trends
47 depression
48 different levels
49 different mother trees
50 distribution
51 disturbance hypothesis
52 disturbances
53 diversity
54 diversity of saplings
55 ecosystem disturbance
56 efficient mixing
57 forest gaps
58 forest populations
59 gap
60 genetic admixture
61 genetic diversity
62 genetic structure
63 genetic variation
64 hypothesis
65 increase
66 intermediate disturbance
67 intermediate disturbance hypothesis
68 interplay
69 intra-specific scale
70 levels
71 life
72 life stages
73 light-demanding Neotropical treeV.
74 light-responsive tree
75 limited number
76 major consequences
77 messageGenetic diversity
78 michelii
79 michelii Heckel
80 mixing
81 mixture
82 mother trees
83 number
84 opening disturbance
85 parentage
86 parentage analysis
87 parents
88 plots
89 population
90 population of saplings
91 population size
92 population viability
93 post-disturbance cohorts
94 potential
95 process
96 progeny
97 regeneration
98 risk
99 saplings
100 scale
101 seeds
102 size
103 spatial genetic structure
104 spite
105 stage
106 stands
107 structure
108 tree contribution
109 treeV.
110 trees
111 trends
112 variation
113 viability
114 schema:name Life after disturbance (II): the intermediate disturbance hypothesis explains genetic variation in forest gaps dominated by Virola michelii Heckel (Myristicaceae)
115 schema:pagination 1035-1042
116 schema:productId N597f9c08a1294ab1bb4dc401f790ee5c
117 Ne85db277ab5f49eabdcf3907f42f60d1
118 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001379897
119 https://doi.org/10.1007/s13595-015-0508-3
120 schema:sdDatePublished 2021-11-01T18:23
121 schema:sdLicense https://scigraph.springernature.com/explorer/license/
122 schema:sdPublisher N3043ba43905d498b92c97bef18206a5f
123 schema:url https://doi.org/10.1007/s13595-015-0508-3
124 sgo:license sg:explorer/license/
125 sgo:sdDataset articles
126 rdf:type schema:ScholarlyArticle
127 N3043ba43905d498b92c97bef18206a5f schema:name Springer Nature - SN SciGraph project
128 rdf:type schema:Organization
129 N4a059b37b1cc4915be918b08e83f8510 rdf:first sg:person.013311223257.18
130 rdf:rest Nd3ae7e9f073440dfb051715354352a4e
131 N597f9c08a1294ab1bb4dc401f790ee5c schema:name doi
132 schema:value 10.1007/s13595-015-0508-3
133 rdf:type schema:PropertyValue
134 N6dd3e46a7d474ce8abbcd2299035db9b schema:volumeNumber 72
135 rdf:type schema:PublicationVolume
136 N78621e11075d4673bb515e7e2c3d6636 rdf:first sg:person.015351344143.09
137 rdf:rest rdf:nil
138 N816c2643fec04b8c9a690f904c462039 schema:issueNumber 8
139 rdf:type schema:PublicationIssue
140 Nb30dce0df7d14d2d87cf12f991d249e3 rdf:first sg:person.01032345662.28
141 rdf:rest N4a059b37b1cc4915be918b08e83f8510
142 Nd3ae7e9f073440dfb051715354352a4e rdf:first sg:person.0717320463.89
143 rdf:rest N78621e11075d4673bb515e7e2c3d6636
144 Ne85db277ab5f49eabdcf3907f42f60d1 schema:name dimensions_id
145 schema:value pub.1001379897
146 rdf:type schema:PropertyValue
147 anzsrc-for:07 schema:inDefinedTermSet anzsrc-for:
148 schema:name Agricultural and Veterinary Sciences
149 rdf:type schema:DefinedTerm
150 anzsrc-for:0705 schema:inDefinedTermSet anzsrc-for:
151 schema:name Forestry Sciences
152 rdf:type schema:DefinedTerm
153 sg:journal.1034834 schema:issn 1286-4560
154 1297-966X
155 schema:name Annals of Forest Science
156 schema:publisher Springer Nature
157 rdf:type schema:Periodical
158 sg:person.01032345662.28 schema:affiliation grid-institutes:None
159 schema:familyName Scotti
160 schema:givenName Ivan
161 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01032345662.28
162 rdf:type schema:Person
163 sg:person.013311223257.18 schema:affiliation grid-institutes:None
164 schema:familyName Montaigne
165 schema:givenName William
166 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013311223257.18
167 rdf:type schema:Person
168 sg:person.015351344143.09 schema:affiliation grid-institutes:None
169 schema:familyName Traissac
170 schema:givenName Stéphane
171 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015351344143.09
172 rdf:type schema:Person
173 sg:person.0717320463.89 schema:affiliation grid-institutes:grid.481832.4
174 schema:familyName Cseke
175 schema:givenName Klára
176 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0717320463.89
177 rdf:type schema:Person
178 sg:pub.10.1007/bf00320622 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038784084
179 https://doi.org/10.1007/bf00320622
180 rdf:type schema:CreativeWork
181 sg:pub.10.1007/bf00389011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045899847
182 https://doi.org/10.1007/bf00389011
183 rdf:type schema:CreativeWork
184 sg:pub.10.1007/s00180-007-0072-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1016990478
185 https://doi.org/10.1007/s00180-007-0072-x
186 rdf:type schema:CreativeWork
187 sg:pub.10.1007/s12042-010-9040-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046879217
188 https://doi.org/10.1007/s12042-010-9040-7
189 rdf:type schema:CreativeWork
190 sg:pub.10.1007/s13595-013-0302-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1050265193
191 https://doi.org/10.1007/s13595-013-0302-z
192 rdf:type schema:CreativeWork
193 sg:pub.10.1038/242344a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018971302
194 https://doi.org/10.1038/242344a0
195 rdf:type schema:CreativeWork
196 sg:pub.10.1038/sj.hdy.6800804 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024779720
197 https://doi.org/10.1038/sj.hdy.6800804
198 rdf:type schema:CreativeWork
199 sg:pub.10.1046/j.1365-2540.2001.00942.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1012575233
200 https://doi.org/10.1046/j.1365-2540.2001.00942.x
201 rdf:type schema:CreativeWork
202 sg:pub.10.1186/1471-2105-9-539 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049532772
203 https://doi.org/10.1186/1471-2105-9-539
204 rdf:type schema:CreativeWork
205 grid-institutes:None schema:alternateName AgroParisTech, Unité Mixte de Recherche « Ecologie des Forêts de Guyane » (EcoFoG), Campus Agronomique, BP 709, 97387, Kourou, French Guiana
206 INRA, UR629 « Ecologie des Forêts Méditerranéennes » (URFM), Agroparc, Domaine Saint Paul, 84914, Avignon Cedex 9, France
207 Solicaz, Guyane Technopôle, 16 bis Rue du 14 Juillet, 97300, Cayenne, French Guiana
208 schema:name AgroParisTech, Unité Mixte de Recherche « Ecologie des Forêts de Guyane » (EcoFoG), Campus Agronomique, BP 709, 97387, Kourou, French Guiana
209 INRA, UR629 « Ecologie des Forêts Méditerranéennes » (URFM), Agroparc, Domaine Saint Paul, 84914, Avignon Cedex 9, France
210 Solicaz, Guyane Technopôle, 16 bis Rue du 14 Juillet, 97300, Cayenne, French Guiana
211 Université des Antilles et de la Guyane, Unité Mixte de Recherche « Ecologie des Forêts de Guyane » (EcoFoG), Campus Agronomique, BP 709, 97387, Kourou, French Guiana
212 rdf:type schema:Organization
213 grid-institutes:grid.481832.4 schema:alternateName Department of Forest Tree Breeding, Experiment Station and Arboretum, Forest Research Institute, Várkerület 30/A, 9600, Sárvár, Hungary
214 schema:name Department of Forest Tree Breeding, Experiment Station and Arboretum, Forest Research Institute, Várkerület 30/A, 9600, Sárvár, Hungary
215 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...