First use of participatory Bayesian modeling to study habitat management at multiple scales for biological pest control View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-02

AUTHORS

Nicolas Salliou, Aude Vialatte, Claude Monteil, Cécile Barnaud

ABSTRACT

Habitat management is increasingly considered as a promising approach to favor the ecosystem service of biological control by enhancing natural enemies. However, habitat management, whether at local or landscape scale, remains very uncertain for farmers. Interactions between ecological processes and agricultural practices are indeed uncertain and site-specific, which makes implementation difficult. Thus, prospecting innovations based on habitat management may benefit from integrating local stakeholders and their knowledge. Our objective is to explore with both local and scientific stakeholders how they perceive agricultural practices, ecological processes, and services related to biological pest control and habitat management. We conducted a participatory Bayesian Network modeling approach with five stakeholders in Southwest France around apple orchard cultivation. We co-constructed such Bayesian Networks based on participants’ knowledge. We explored scenarios favoring natural enemies and habitat manipulation with each participant’s Bayesian Network. We compared how different stakeholders perceive the impact of each scenario on the biological control ecosystem service. Our results indicate that a landscape with a high proportion of semi-natural habitats does not translate into significant biological control for most participants even though some stakeholders perceive a significant impact on generalist predators’ activity within orchards. For these local stakeholders, habitat management at the orchard level such as inter-row vegetation seems currently more promising than at the landscape scale. Here, we show for the first time that the use of Bayesian modeling in a participatory manner can give precious insights into the most promising perspectives on habitat management at different scales. These different local perspectives suggest in particular that further dialogue between ecologists and local stakeholders should be sought about inter-row habitat management as the most promising practice to foster biological pest control and other ecosystem services. More... »

PAGES

7

Journal

TITLE

Agronomy for Sustainable Development

ISSUE

1

VOLUME

39

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s13593-018-0553-z

DOI

http://dx.doi.org/10.1007/s13593-018-0553-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1111249068


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0602", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Ecology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "UMR 1201 Dynafor, INRA, 24 chemin de Borde Rouge, 31326, Castanet Tolosan Cedex, France", 
            "D-BAUG, IRL, Planning of Landscape and Urban Systems (PLUS), ETH Z\u00fcrich, Stefano-Franscini-Platz 5, CH-8093, Z\u00fcrich, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Salliou", 
        "givenName": "Nicolas", 
        "id": "sg:person.010462025013.89", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010462025013.89"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Toulouse", 
          "id": "https://www.grid.ac/institutes/grid.11417.32", 
          "name": [
            "UMR 1201 Dynafor, INRA, 24 chemin de Borde Rouge, 31326, Castanet Tolosan Cedex, France", 
            "INP-ENSAT, University of Toulouse, BP 32607, 31326, Castanet Tolosan, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vialatte", 
        "givenName": "Aude", 
        "id": "sg:person.0646264010.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0646264010.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Toulouse", 
          "id": "https://www.grid.ac/institutes/grid.11417.32", 
          "name": [
            "UMR 1201 Dynafor, INRA, 24 chemin de Borde Rouge, 31326, Castanet Tolosan Cedex, France", 
            "INP-ENSAT, University of Toulouse, BP 32607, 31326, Castanet Tolosan, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Monteil", 
        "givenName": "Claude", 
        "id": "sg:person.011554206125.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011554206125.02"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "UMR 1201 Dynafor, INRA, 24 chemin de Borde Rouge, 31326, Castanet Tolosan Cedex, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Barnaud", 
        "givenName": "C\u00e9cile", 
        "id": "sg:person.010663025625.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010663025625.17"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.agee.2016.01.039", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000978588"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.agee.2016.01.039", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000978588"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.agee.2016.01.039", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000978588"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.agee.2016.01.039", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000978588"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.biocontrol.2007.09.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006855236"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s13593-015-0306-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008932373", 
          "https://doi.org/10.1007/s13593-015-0306-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev.ento.47.091201.145240", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011510876"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1570-7458.2003.00018.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016469949"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10980-014-0103-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021540494", 
          "https://doi.org/10.1007/s10980-014-0103-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jrurstud.2011.02.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021992838"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1300/j064v07n01_07", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023590327"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1890/12-1819.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025597968"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/21513732.2012.663792", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026488822"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.agee.2013.02.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032000166"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10526-015-9687-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034465619", 
          "https://doi.org/10.1007/s10526-015-9687-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ecolecon.2015.07.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034938248"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-007-4503-2_18", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035097326", 
          "https://doi.org/10.1007/978-94-007-4503-2_18"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/10440046.2011.654008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041348408"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10980-010-9489-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044924459", 
          "https://doi.org/10.1007/s10980-010-9489-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10980-010-9489-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044924459", 
          "https://doi.org/10.1007/s10980-010-9489-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.agee.2011.05.027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045223578"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tree.2015.06.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045303450"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.biocon.2016.10.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045693170"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.biocon.2016.10.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045693170"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.biocon.2016.10.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045693170"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1051/agro/2009013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045795515", 
          "https://doi.org/10.1051/agro/2009013"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.agsy.2015.11.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051596052"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10340-013-0518-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052501767", 
          "https://doi.org/10.1007/s10340-013-0518-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1051/nss:2005004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057047324"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/jee/81.4.1170", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059780088"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1603/en12085", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068122632"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.17660/actahortic.1996.422.34", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068393691"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5539/jsd.v5n12p1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072964981"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5751/es-03748-160144", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1073096666"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5751/es-03748-160144", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1073096666"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5751/es-09249-220216", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085305843"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5751/es-09249-220216", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085305843"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.envsoft.2017.06.050", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090574113"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-02", 
    "datePublishedReg": "2019-02-01", 
    "description": "Habitat management is increasingly considered as a promising approach to favor the ecosystem service of biological control by enhancing natural enemies. However, habitat management, whether at local or landscape scale, remains very uncertain for farmers. Interactions between ecological processes and agricultural practices are indeed uncertain and site-specific, which makes implementation difficult. Thus, prospecting innovations based on habitat management may benefit from integrating local stakeholders and their knowledge. Our objective is to explore with both local and scientific stakeholders how they perceive agricultural practices, ecological processes, and services related to biological pest control and habitat management. We conducted a participatory Bayesian Network modeling approach with five stakeholders in Southwest France around apple orchard cultivation. We co-constructed such Bayesian Networks based on participants\u2019 knowledge. We explored scenarios favoring natural enemies and habitat manipulation with each participant\u2019s Bayesian Network. We compared how different stakeholders perceive the impact of each scenario on the biological control ecosystem service. Our results indicate that a landscape with a high proportion of semi-natural habitats does not translate into significant biological control for most participants even though some stakeholders perceive a significant impact on generalist predators\u2019 activity within orchards. For these local stakeholders, habitat management at the orchard level such as inter-row vegetation seems currently more promising than at the landscape scale. Here, we show for the first time that the use of Bayesian modeling in a participatory manner can give precious insights into the most promising perspectives on habitat management at different scales. These different local perspectives suggest in particular that further dialogue between ecologists and local stakeholders should be sought about inter-row habitat management as the most promising practice to foster biological pest control and other ecosystem services.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s13593-018-0553-z", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1135950", 
        "issn": [
          "1774-0746", 
          "1297-9643"
        ], 
        "name": "Agronomy for Sustainable Development", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "39"
      }
    ], 
    "name": "First use of participatory Bayesian modeling to study habitat management at multiple scales for biological pest control", 
    "pagination": "7", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "836b2b4ee38031b6f8c6f756b81eb4714e3a9691e582daee2e17ab0b0737c325"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s13593-018-0553-z"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1111249068"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s13593-018-0553-z", 
      "https://app.dimensions.ai/details/publication/pub.1111249068"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:19", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000348_0000000348/records_54322_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs13593-018-0553-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s13593-018-0553-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s13593-018-0553-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s13593-018-0553-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s13593-018-0553-z'


 

This table displays all metadata directly associated to this object as RDF triples.

185 TRIPLES      21 PREDICATES      57 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s13593-018-0553-z schema:about anzsrc-for:06
2 anzsrc-for:0602
3 schema:author Nde87134db64b4ca5a0463fcf8707ce8c
4 schema:citation sg:pub.10.1007/978-94-007-4503-2_18
5 sg:pub.10.1007/s10340-013-0518-6
6 sg:pub.10.1007/s10526-015-9687-y
7 sg:pub.10.1007/s10980-010-9489-7
8 sg:pub.10.1007/s10980-014-0103-2
9 sg:pub.10.1007/s13593-015-0306-1
10 sg:pub.10.1051/agro/2009013
11 https://doi.org/10.1016/j.agee.2011.05.027
12 https://doi.org/10.1016/j.agee.2013.02.008
13 https://doi.org/10.1016/j.agee.2016.01.039
14 https://doi.org/10.1016/j.agsy.2015.11.012
15 https://doi.org/10.1016/j.biocon.2016.10.001
16 https://doi.org/10.1016/j.biocontrol.2007.09.002
17 https://doi.org/10.1016/j.ecolecon.2015.07.006
18 https://doi.org/10.1016/j.envsoft.2017.06.050
19 https://doi.org/10.1016/j.jrurstud.2011.02.001
20 https://doi.org/10.1016/j.tree.2015.06.007
21 https://doi.org/10.1046/j.1570-7458.2003.00018.x
22 https://doi.org/10.1051/nss:2005004
23 https://doi.org/10.1080/10440046.2011.654008
24 https://doi.org/10.1080/21513732.2012.663792
25 https://doi.org/10.1093/jee/81.4.1170
26 https://doi.org/10.1146/annurev.ento.47.091201.145240
27 https://doi.org/10.1300/j064v07n01_07
28 https://doi.org/10.1603/en12085
29 https://doi.org/10.17660/actahortic.1996.422.34
30 https://doi.org/10.1890/12-1819.1
31 https://doi.org/10.5539/jsd.v5n12p1
32 https://doi.org/10.5751/es-03748-160144
33 https://doi.org/10.5751/es-09249-220216
34 schema:datePublished 2019-02
35 schema:datePublishedReg 2019-02-01
36 schema:description Habitat management is increasingly considered as a promising approach to favor the ecosystem service of biological control by enhancing natural enemies. However, habitat management, whether at local or landscape scale, remains very uncertain for farmers. Interactions between ecological processes and agricultural practices are indeed uncertain and site-specific, which makes implementation difficult. Thus, prospecting innovations based on habitat management may benefit from integrating local stakeholders and their knowledge. Our objective is to explore with both local and scientific stakeholders how they perceive agricultural practices, ecological processes, and services related to biological pest control and habitat management. We conducted a participatory Bayesian Network modeling approach with five stakeholders in Southwest France around apple orchard cultivation. We co-constructed such Bayesian Networks based on participants’ knowledge. We explored scenarios favoring natural enemies and habitat manipulation with each participant’s Bayesian Network. We compared how different stakeholders perceive the impact of each scenario on the biological control ecosystem service. Our results indicate that a landscape with a high proportion of semi-natural habitats does not translate into significant biological control for most participants even though some stakeholders perceive a significant impact on generalist predators’ activity within orchards. For these local stakeholders, habitat management at the orchard level such as inter-row vegetation seems currently more promising than at the landscape scale. Here, we show for the first time that the use of Bayesian modeling in a participatory manner can give precious insights into the most promising perspectives on habitat management at different scales. These different local perspectives suggest in particular that further dialogue between ecologists and local stakeholders should be sought about inter-row habitat management as the most promising practice to foster biological pest control and other ecosystem services.
37 schema:genre research_article
38 schema:inLanguage en
39 schema:isAccessibleForFree false
40 schema:isPartOf N8063a658c5fa4219bc509b2ff96d4050
41 Ne7b7705b9594427585caed88ef77e92b
42 sg:journal.1135950
43 schema:name First use of participatory Bayesian modeling to study habitat management at multiple scales for biological pest control
44 schema:pagination 7
45 schema:productId N1ac33c70380b4034b193aad97c884889
46 Nbed5bcc072aa4df0870bc5cbc59c1a5e
47 Ne3e61dfd80514a1bab6a8678323c55ae
48 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111249068
49 https://doi.org/10.1007/s13593-018-0553-z
50 schema:sdDatePublished 2019-04-11T10:19
51 schema:sdLicense https://scigraph.springernature.com/explorer/license/
52 schema:sdPublisher N041f31c0e61248b682bb52a4dd85bd84
53 schema:url https://link.springer.com/10.1007%2Fs13593-018-0553-z
54 sgo:license sg:explorer/license/
55 sgo:sdDataset articles
56 rdf:type schema:ScholarlyArticle
57 N041f31c0e61248b682bb52a4dd85bd84 schema:name Springer Nature - SN SciGraph project
58 rdf:type schema:Organization
59 N1ac33c70380b4034b193aad97c884889 schema:name readcube_id
60 schema:value 836b2b4ee38031b6f8c6f756b81eb4714e3a9691e582daee2e17ab0b0737c325
61 rdf:type schema:PropertyValue
62 N44f5f6b82fff49c7a0dbb146e24f1506 schema:name D-BAUG, IRL, Planning of Landscape and Urban Systems (PLUS), ETH Zürich, Stefano-Franscini-Platz 5, CH-8093, Zürich, Switzerland
63 UMR 1201 Dynafor, INRA, 24 chemin de Borde Rouge, 31326, Castanet Tolosan Cedex, France
64 rdf:type schema:Organization
65 N8063a658c5fa4219bc509b2ff96d4050 schema:volumeNumber 39
66 rdf:type schema:PublicationVolume
67 N8371358f8d59491cbc8cc2a11d758d20 rdf:first sg:person.0646264010.05
68 rdf:rest Ne06ab6ff74a54aabb46e9e06f84ea09e
69 Na3180b2ca374469684a06c9beb3d79b2 rdf:first sg:person.010663025625.17
70 rdf:rest rdf:nil
71 Nbed5bcc072aa4df0870bc5cbc59c1a5e schema:name dimensions_id
72 schema:value pub.1111249068
73 rdf:type schema:PropertyValue
74 Nde87134db64b4ca5a0463fcf8707ce8c rdf:first sg:person.010462025013.89
75 rdf:rest N8371358f8d59491cbc8cc2a11d758d20
76 Ne06ab6ff74a54aabb46e9e06f84ea09e rdf:first sg:person.011554206125.02
77 rdf:rest Na3180b2ca374469684a06c9beb3d79b2
78 Ne3e61dfd80514a1bab6a8678323c55ae schema:name doi
79 schema:value 10.1007/s13593-018-0553-z
80 rdf:type schema:PropertyValue
81 Ne7b7705b9594427585caed88ef77e92b schema:issueNumber 1
82 rdf:type schema:PublicationIssue
83 Nf8577dcfe0f844e8abb270ef02d5928c schema:name UMR 1201 Dynafor, INRA, 24 chemin de Borde Rouge, 31326, Castanet Tolosan Cedex, France
84 rdf:type schema:Organization
85 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
86 schema:name Biological Sciences
87 rdf:type schema:DefinedTerm
88 anzsrc-for:0602 schema:inDefinedTermSet anzsrc-for:
89 schema:name Ecology
90 rdf:type schema:DefinedTerm
91 sg:journal.1135950 schema:issn 1297-9643
92 1774-0746
93 schema:name Agronomy for Sustainable Development
94 rdf:type schema:Periodical
95 sg:person.010462025013.89 schema:affiliation N44f5f6b82fff49c7a0dbb146e24f1506
96 schema:familyName Salliou
97 schema:givenName Nicolas
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010462025013.89
99 rdf:type schema:Person
100 sg:person.010663025625.17 schema:affiliation Nf8577dcfe0f844e8abb270ef02d5928c
101 schema:familyName Barnaud
102 schema:givenName Cécile
103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010663025625.17
104 rdf:type schema:Person
105 sg:person.011554206125.02 schema:affiliation https://www.grid.ac/institutes/grid.11417.32
106 schema:familyName Monteil
107 schema:givenName Claude
108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011554206125.02
109 rdf:type schema:Person
110 sg:person.0646264010.05 schema:affiliation https://www.grid.ac/institutes/grid.11417.32
111 schema:familyName Vialatte
112 schema:givenName Aude
113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0646264010.05
114 rdf:type schema:Person
115 sg:pub.10.1007/978-94-007-4503-2_18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035097326
116 https://doi.org/10.1007/978-94-007-4503-2_18
117 rdf:type schema:CreativeWork
118 sg:pub.10.1007/s10340-013-0518-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052501767
119 https://doi.org/10.1007/s10340-013-0518-6
120 rdf:type schema:CreativeWork
121 sg:pub.10.1007/s10526-015-9687-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1034465619
122 https://doi.org/10.1007/s10526-015-9687-y
123 rdf:type schema:CreativeWork
124 sg:pub.10.1007/s10980-010-9489-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044924459
125 https://doi.org/10.1007/s10980-010-9489-7
126 rdf:type schema:CreativeWork
127 sg:pub.10.1007/s10980-014-0103-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021540494
128 https://doi.org/10.1007/s10980-014-0103-2
129 rdf:type schema:CreativeWork
130 sg:pub.10.1007/s13593-015-0306-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008932373
131 https://doi.org/10.1007/s13593-015-0306-1
132 rdf:type schema:CreativeWork
133 sg:pub.10.1051/agro/2009013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045795515
134 https://doi.org/10.1051/agro/2009013
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1016/j.agee.2011.05.027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045223578
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1016/j.agee.2013.02.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032000166
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1016/j.agee.2016.01.039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000978588
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1016/j.agsy.2015.11.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051596052
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1016/j.biocon.2016.10.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045693170
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1016/j.biocontrol.2007.09.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006855236
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1016/j.ecolecon.2015.07.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034938248
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1016/j.envsoft.2017.06.050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090574113
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1016/j.jrurstud.2011.02.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021992838
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1016/j.tree.2015.06.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045303450
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1046/j.1570-7458.2003.00018.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1016469949
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1051/nss:2005004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057047324
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1080/10440046.2011.654008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041348408
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1080/21513732.2012.663792 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026488822
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1093/jee/81.4.1170 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059780088
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1146/annurev.ento.47.091201.145240 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011510876
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1300/j064v07n01_07 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023590327
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1603/en12085 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068122632
171 rdf:type schema:CreativeWork
172 https://doi.org/10.17660/actahortic.1996.422.34 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068393691
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1890/12-1819.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025597968
175 rdf:type schema:CreativeWork
176 https://doi.org/10.5539/jsd.v5n12p1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072964981
177 rdf:type schema:CreativeWork
178 https://doi.org/10.5751/es-03748-160144 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073096666
179 rdf:type schema:CreativeWork
180 https://doi.org/10.5751/es-09249-220216 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085305843
181 rdf:type schema:CreativeWork
182 https://www.grid.ac/institutes/grid.11417.32 schema:alternateName University of Toulouse
183 schema:name INP-ENSAT, University of Toulouse, BP 32607, 31326, Castanet Tolosan, France
184 UMR 1201 Dynafor, INRA, 24 chemin de Borde Rouge, 31326, Castanet Tolosan Cedex, France
185 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...