Relationship among different skin dose definitions in high-dose-rate (HDR) balloon breast brachytherapy View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-12

AUTHORS

Yongbok Kim, James D. Christensen, Shaakir Hasan, Mark G. Trombetta

ABSTRACT

To establish the relationship among various skin dosimetric indices and different volumetric definitions of skin in high-dose-rate (HDR) balloon breast brachytherapy. Fifty breast cancer patients were treated with HDR balloon brachytherapy. The MammoSite® applicator was used for 40 patients and the Contura® applicator for 10 patients. Skin structure was retrospectively defined by expanding the skin surface internal to the body with a thickness of 1, 2, 3, 4, or 5 mm in one method. In another method, the skin was defined by expanding its external to the body to demonstrate the maximum point dose on the skin surface. For each skin structure defined by six different methods, three dosimetric data points extracted from dose-volume histograms were compared. Dmax was defined as the maximum point dose, and D1cc and D0.1cc were defined as the minimum dose to 1 cm3 and 0.1 cm3 of the most irradiated skin volume, respectively. The relationship among 18 dosimetric parameters was presented in graphs, and linear curve fitting was performed to provide mathematical formulas. For each skin definition, the Dmax, D1cc, and D0.1cc values show a linear relationship such that Dmax is the largest, D0.1cc is the next, and D1cc is the smallest value. For each dosimetric parameter, there was a linear relationship among the dosimetric indices for 6 different skin definitions. For clinical use, all linear relationships were displayed in graphs and two parameters for linear fitting were provided. Average R2 value for curve fitting was 0.978. The presented relationships can be developed in each individual institution and convert one dosimetric index to another for different skin definitions. More... »

PAGES

1-9

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s13566-018-0364-5

DOI

http://dx.doi.org/10.1007/s13566-018-0364-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1109992095


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Arizona", 
          "id": "https://www.grid.ac/institutes/grid.134563.6", 
          "name": [
            "Department of Radiation Oncology, The University of Arizona, Banner University Medicine North Building #2, 3838 North Campbell Avenue, 85719, Tucson, AZ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "Yongbok", 
        "id": "sg:person.01213365000.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01213365000.31"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Temple University", 
          "id": "https://www.grid.ac/institutes/grid.264727.2", 
          "name": [
            "Division of Radiation Oncology, Allegheny Health Network, Pittsburgh, PA, USA", 
            "Department of Radiation Oncology, Temple University School of Medicine, Philadelphia, PA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Christensen", 
        "givenName": "James D.", 
        "id": "sg:person.010721436517.69", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010721436517.69"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Allegheny Health Network", 
          "id": "https://www.grid.ac/institutes/grid.417046.0", 
          "name": [
            "Division of Radiation Oncology, Allegheny Health Network, Pittsburgh, PA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hasan", 
        "givenName": "Shaakir", 
        "id": "sg:person.0760220234.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0760220234.08"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Drexel University", 
          "id": "https://www.grid.ac/institutes/grid.166341.7", 
          "name": [
            "Division of Radiation Oncology, Allegheny Health Network, Pittsburgh, PA, USA", 
            "Department of Radiation Oncology, Pittsburgh Clinical Campus, Drexel University College of Medicine, Pittsburgh, PA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Trombetta", 
        "givenName": "Mark G.", 
        "id": "sg:person.01065160120.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01065160120.48"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.5114/jcb.2012.27946", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000931703"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijrobp.2004.05.039", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001860600"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.brachy.2015.08.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001909460"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.brachy.2016.07.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003948299"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1118/1.597458", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004307346"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijrobp.2013.01.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004863929"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijrobp.2009.10.025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007730735"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.meddos.2012.10.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008577619"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1118/1.3568927", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009281509"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijrobp.2014.08.341", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009540035"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1118/1.1763006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009566604"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijrobp.2010.12.023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013399889"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13014-015-0468-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015958657", 
          "https://doi.org/10.1186/s13014-015-0468-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13014-015-0468-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015958657", 
          "https://doi.org/10.1186/s13014-015-0468-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5114/jcb.2014.43167", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022464253"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijrobp.2016.03.033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022658220"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijrobp.2013.05.039", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027219940"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1118/1.4747264", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030572901"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.meddos.2014.11.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031279976"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.clbc.2016.02.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031823187"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.brachy.2013.04.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032459955"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.brachy.2012.05.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037991546"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s13566-014-0153-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041676384", 
          "https://doi.org/10.1007/s13566-014-0153-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijrobp.2008.01.024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049740094"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1118/1.3183497", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050944783"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1118/1.1646040", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051578899"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3109/02841868809090330", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052917477"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/coc.0000000000000082", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053593603"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/coc.0000000000000082", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053593603"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-12", 
    "datePublishedReg": "2018-12-01", 
    "description": "To establish the relationship among various skin dosimetric indices and different volumetric definitions of skin in high-dose-rate (HDR) balloon breast brachytherapy. Fifty breast cancer patients were treated with HDR balloon brachytherapy. The MammoSite\u00ae applicator was used for 40 patients and the Contura\u00ae applicator for 10 patients. Skin structure was retrospectively defined by expanding the skin surface internal to the body with a thickness of 1, 2, 3, 4, or 5 mm in one method. In another method, the skin was defined by expanding its external to the body to demonstrate the maximum point dose on the skin surface. For each skin structure defined by six different methods, three dosimetric data points extracted from dose-volume histograms were compared. Dmax was defined as the maximum point dose, and D1cc and D0.1cc were defined as the minimum dose to 1 cm3 and 0.1 cm3 of the most irradiated skin volume, respectively. The relationship among 18 dosimetric parameters was presented in graphs, and linear curve fitting was performed to provide mathematical formulas. For each skin definition, the Dmax, D1cc, and D0.1cc values show a linear relationship such that Dmax is the largest, D0.1cc is the next, and D1cc is the smallest value. For each dosimetric parameter, there was a linear relationship among the dosimetric indices for 6 different skin definitions. For clinical use, all linear relationships were displayed in graphs and two parameters for linear fitting were provided. Average R2 value for curve fitting was 0.978. The presented relationships can be developed in each individual institution and convert one dosimetric index to another for different skin definitions.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s13566-018-0364-5", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1047354", 
        "issn": [
          "1948-7894", 
          "1948-7908"
        ], 
        "name": "Journal of Radiation Oncology", 
        "type": "Periodical"
      }
    ], 
    "name": "Relationship among different skin dose definitions in high-dose-rate (HDR) balloon breast brachytherapy", 
    "pagination": "1-9", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "a9601beeceb9069fe02ee8e6ea978fb81a079cdb121cde7c816a8149507acd24"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s13566-018-0364-5"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1109992095"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s13566-018-0364-5", 
      "https://app.dimensions.ai/details/publication/pub.1109992095"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T08:09", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000266_0000000266/records_39066_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs13566-018-0364-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s13566-018-0364-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s13566-018-0364-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s13566-018-0364-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s13566-018-0364-5'


 

This table displays all metadata directly associated to this object as RDF triples.

170 TRIPLES      21 PREDICATES      52 URIs      17 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s13566-018-0364-5 schema:about anzsrc-for:02
2 anzsrc-for:0299
3 schema:author N66f540491aeb428a8c36028b983f29d5
4 schema:citation sg:pub.10.1007/s13566-014-0153-8
5 sg:pub.10.1186/s13014-015-0468-7
6 https://doi.org/10.1016/j.brachy.2012.05.005
7 https://doi.org/10.1016/j.brachy.2013.04.005
8 https://doi.org/10.1016/j.brachy.2015.08.002
9 https://doi.org/10.1016/j.brachy.2016.07.002
10 https://doi.org/10.1016/j.clbc.2016.02.010
11 https://doi.org/10.1016/j.ijrobp.2004.05.039
12 https://doi.org/10.1016/j.ijrobp.2008.01.024
13 https://doi.org/10.1016/j.ijrobp.2009.10.025
14 https://doi.org/10.1016/j.ijrobp.2010.12.023
15 https://doi.org/10.1016/j.ijrobp.2013.01.005
16 https://doi.org/10.1016/j.ijrobp.2013.05.039
17 https://doi.org/10.1016/j.ijrobp.2014.08.341
18 https://doi.org/10.1016/j.ijrobp.2016.03.033
19 https://doi.org/10.1016/j.meddos.2012.10.001
20 https://doi.org/10.1016/j.meddos.2014.11.005
21 https://doi.org/10.1097/coc.0000000000000082
22 https://doi.org/10.1118/1.1646040
23 https://doi.org/10.1118/1.1763006
24 https://doi.org/10.1118/1.3183497
25 https://doi.org/10.1118/1.3568927
26 https://doi.org/10.1118/1.4747264
27 https://doi.org/10.1118/1.597458
28 https://doi.org/10.3109/02841868809090330
29 https://doi.org/10.5114/jcb.2012.27946
30 https://doi.org/10.5114/jcb.2014.43167
31 schema:datePublished 2018-12
32 schema:datePublishedReg 2018-12-01
33 schema:description To establish the relationship among various skin dosimetric indices and different volumetric definitions of skin in high-dose-rate (HDR) balloon breast brachytherapy. Fifty breast cancer patients were treated with HDR balloon brachytherapy. The MammoSite® applicator was used for 40 patients and the Contura® applicator for 10 patients. Skin structure was retrospectively defined by expanding the skin surface internal to the body with a thickness of 1, 2, 3, 4, or 5 mm in one method. In another method, the skin was defined by expanding its external to the body to demonstrate the maximum point dose on the skin surface. For each skin structure defined by six different methods, three dosimetric data points extracted from dose-volume histograms were compared. Dmax was defined as the maximum point dose, and D1cc and D0.1cc were defined as the minimum dose to 1 cm3 and 0.1 cm3 of the most irradiated skin volume, respectively. The relationship among 18 dosimetric parameters was presented in graphs, and linear curve fitting was performed to provide mathematical formulas. For each skin definition, the Dmax, D1cc, and D0.1cc values show a linear relationship such that Dmax is the largest, D0.1cc is the next, and D1cc is the smallest value. For each dosimetric parameter, there was a linear relationship among the dosimetric indices for 6 different skin definitions. For clinical use, all linear relationships were displayed in graphs and two parameters for linear fitting were provided. Average R2 value for curve fitting was 0.978. The presented relationships can be developed in each individual institution and convert one dosimetric index to another for different skin definitions.
34 schema:genre research_article
35 schema:inLanguage en
36 schema:isAccessibleForFree false
37 schema:isPartOf sg:journal.1047354
38 schema:name Relationship among different skin dose definitions in high-dose-rate (HDR) balloon breast brachytherapy
39 schema:pagination 1-9
40 schema:productId N1ed7b6c0d755476fbf802884042b8c97
41 N5d688c3a27c545d6b00ad7c8bb830bfd
42 Nf427850118fd46ceb5b9e40237ed0652
43 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109992095
44 https://doi.org/10.1007/s13566-018-0364-5
45 schema:sdDatePublished 2019-04-11T08:09
46 schema:sdLicense https://scigraph.springernature.com/explorer/license/
47 schema:sdPublisher Nb45868ee36f549fab433ee0072e57dc7
48 schema:url https://link.springer.com/10.1007%2Fs13566-018-0364-5
49 sgo:license sg:explorer/license/
50 sgo:sdDataset articles
51 rdf:type schema:ScholarlyArticle
52 N0d8270a59cba4c0cad50f0e29d5fd4ab rdf:first sg:person.0760220234.08
53 rdf:rest Nccba3dc481504a0d9fd8cb3a93c5e7c2
54 N1ed7b6c0d755476fbf802884042b8c97 schema:name readcube_id
55 schema:value a9601beeceb9069fe02ee8e6ea978fb81a079cdb121cde7c816a8149507acd24
56 rdf:type schema:PropertyValue
57 N5d688c3a27c545d6b00ad7c8bb830bfd schema:name dimensions_id
58 schema:value pub.1109992095
59 rdf:type schema:PropertyValue
60 N66f540491aeb428a8c36028b983f29d5 rdf:first sg:person.01213365000.31
61 rdf:rest Nfaa786c482bc433f9227f6d468b6fe5f
62 Nb45868ee36f549fab433ee0072e57dc7 schema:name Springer Nature - SN SciGraph project
63 rdf:type schema:Organization
64 Nccba3dc481504a0d9fd8cb3a93c5e7c2 rdf:first sg:person.01065160120.48
65 rdf:rest rdf:nil
66 Nf427850118fd46ceb5b9e40237ed0652 schema:name doi
67 schema:value 10.1007/s13566-018-0364-5
68 rdf:type schema:PropertyValue
69 Nfaa786c482bc433f9227f6d468b6fe5f rdf:first sg:person.010721436517.69
70 rdf:rest N0d8270a59cba4c0cad50f0e29d5fd4ab
71 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
72 schema:name Physical Sciences
73 rdf:type schema:DefinedTerm
74 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
75 schema:name Other Physical Sciences
76 rdf:type schema:DefinedTerm
77 sg:journal.1047354 schema:issn 1948-7894
78 1948-7908
79 schema:name Journal of Radiation Oncology
80 rdf:type schema:Periodical
81 sg:person.01065160120.48 schema:affiliation https://www.grid.ac/institutes/grid.166341.7
82 schema:familyName Trombetta
83 schema:givenName Mark G.
84 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01065160120.48
85 rdf:type schema:Person
86 sg:person.010721436517.69 schema:affiliation https://www.grid.ac/institutes/grid.264727.2
87 schema:familyName Christensen
88 schema:givenName James D.
89 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010721436517.69
90 rdf:type schema:Person
91 sg:person.01213365000.31 schema:affiliation https://www.grid.ac/institutes/grid.134563.6
92 schema:familyName Kim
93 schema:givenName Yongbok
94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01213365000.31
95 rdf:type schema:Person
96 sg:person.0760220234.08 schema:affiliation https://www.grid.ac/institutes/grid.417046.0
97 schema:familyName Hasan
98 schema:givenName Shaakir
99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0760220234.08
100 rdf:type schema:Person
101 sg:pub.10.1007/s13566-014-0153-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041676384
102 https://doi.org/10.1007/s13566-014-0153-8
103 rdf:type schema:CreativeWork
104 sg:pub.10.1186/s13014-015-0468-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015958657
105 https://doi.org/10.1186/s13014-015-0468-7
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1016/j.brachy.2012.05.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037991546
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1016/j.brachy.2013.04.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032459955
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1016/j.brachy.2015.08.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001909460
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1016/j.brachy.2016.07.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003948299
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1016/j.clbc.2016.02.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031823187
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1016/j.ijrobp.2004.05.039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001860600
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1016/j.ijrobp.2008.01.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049740094
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1016/j.ijrobp.2009.10.025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007730735
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1016/j.ijrobp.2010.12.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013399889
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1016/j.ijrobp.2013.01.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004863929
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1016/j.ijrobp.2013.05.039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027219940
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1016/j.ijrobp.2014.08.341 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009540035
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1016/j.ijrobp.2016.03.033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022658220
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1016/j.meddos.2012.10.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008577619
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1016/j.meddos.2014.11.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031279976
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1097/coc.0000000000000082 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053593603
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1118/1.1646040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051578899
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1118/1.1763006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009566604
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1118/1.3183497 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050944783
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1118/1.3568927 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009281509
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1118/1.4747264 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030572901
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1118/1.597458 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004307346
150 rdf:type schema:CreativeWork
151 https://doi.org/10.3109/02841868809090330 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052917477
152 rdf:type schema:CreativeWork
153 https://doi.org/10.5114/jcb.2012.27946 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000931703
154 rdf:type schema:CreativeWork
155 https://doi.org/10.5114/jcb.2014.43167 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022464253
156 rdf:type schema:CreativeWork
157 https://www.grid.ac/institutes/grid.134563.6 schema:alternateName University of Arizona
158 schema:name Department of Radiation Oncology, The University of Arizona, Banner University Medicine North Building #2, 3838 North Campbell Avenue, 85719, Tucson, AZ, USA
159 rdf:type schema:Organization
160 https://www.grid.ac/institutes/grid.166341.7 schema:alternateName Drexel University
161 schema:name Department of Radiation Oncology, Pittsburgh Clinical Campus, Drexel University College of Medicine, Pittsburgh, PA, USA
162 Division of Radiation Oncology, Allegheny Health Network, Pittsburgh, PA, USA
163 rdf:type schema:Organization
164 https://www.grid.ac/institutes/grid.264727.2 schema:alternateName Temple University
165 schema:name Department of Radiation Oncology, Temple University School of Medicine, Philadelphia, PA, USA
166 Division of Radiation Oncology, Allegheny Health Network, Pittsburgh, PA, USA
167 rdf:type schema:Organization
168 https://www.grid.ac/institutes/grid.417046.0 schema:alternateName Allegheny Health Network
169 schema:name Division of Radiation Oncology, Allegheny Health Network, Pittsburgh, PA, USA
170 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...