Variabilité ventilatoire et assistance ventilatoire en réanimation View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2014-01-07

AUTHORS

M. Schmidt, J. Cecchini, F. Kindler, T. Similowski, A. Demoule

ABSTRACT

Ventilation is not monotonous. In contrast, the breathing pattern components vary with time, not only with respect to homeostatic adjustment needs, but also from one cycle to another (often referred to as the “anharmonic” period). These breath-by-breath variations in tidal volume and its components are a result of the complex and chaotic nature — in mathematical terms — of the central ventilator command that creates the tidal volume. Respiratory variability reflects “healthy’ breathing, whereas decreasing variability of the breathing pattern components is a reflection of “poor health”. This decrease may be due to central command changes or, it may be due to the “filtering” of the central variability changes in regards to the mechanical loads: the complexity of the ventilatory flow and its breath-by-breath variability is related to both the neuro-mechanical coupling and the load-capacity adequacy. Thus, in intensive care, low ventilatory variability predicts mechanical ventilation weaning failure and is also an independent risk factor of death. Moreover, in animal models, the addition of extrinsic variability has shown improvements in both lung mechanics and gas exchange. The restoration of a natural variability through new mechanical ventilation modes may prove beneficial. More... »

PAGES

17-24

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s13546-014-0843-z

DOI

http://dx.doi.org/10.1007/s13546-014-0843-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1052679472


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1116", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical Physiology", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "\u00ab Neurophysiologie Respiratoire Exp\u00e9rimentale et Clinique \u00bb, UMR-S 1158 Inserm-UPMC, Paris, France", 
          "id": "http://www.grid.ac/institutes/grid.7429.8", 
          "name": [
            "Unit\u00e9 de r\u00e9animation et de surveillance continue, service de pneumologie et r\u00e9animation m\u00e9dicale, groupe hospitalier Piti\u00e9-Salp\u00eatri\u00e8re, Paris, France", 
            "\u00ab Neurophysiologie Respiratoire Exp\u00e9rimentale et Clinique \u00bb, UMR-S 1158 Inserm-UPMC, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schmidt", 
        "givenName": "M.", 
        "id": "sg:person.01234316166.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01234316166.01"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "\u00ab Neurophysiologie Respiratoire Exp\u00e9rimentale et Clinique \u00bb, UMR-S 1158 Inserm-UPMC, Paris, France", 
          "id": "http://www.grid.ac/institutes/grid.7429.8", 
          "name": [
            "Unit\u00e9 de r\u00e9animation et de surveillance continue, service de pneumologie et r\u00e9animation m\u00e9dicale, groupe hospitalier Piti\u00e9-Salp\u00eatri\u00e8re, Paris, France", 
            "\u00ab Neurophysiologie Respiratoire Exp\u00e9rimentale et Clinique \u00bb, UMR-S 1158 Inserm-UPMC, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cecchini", 
        "givenName": "J.", 
        "id": "sg:person.0672405325.65", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0672405325.65"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "\u00ab Neurophysiologie Respiratoire Exp\u00e9rimentale et Clinique \u00bb, UMR-S 1158 Inserm-UPMC, Paris, France", 
          "id": "http://www.grid.ac/institutes/grid.7429.8", 
          "name": [
            "Unit\u00e9 de r\u00e9animation et de surveillance continue, service de pneumologie et r\u00e9animation m\u00e9dicale, groupe hospitalier Piti\u00e9-Salp\u00eatri\u00e8re, Paris, France", 
            "\u00ab Neurophysiologie Respiratoire Exp\u00e9rimentale et Clinique \u00bb, UMR-S 1158 Inserm-UPMC, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kindler", 
        "givenName": "F.", 
        "id": "sg:person.01100101155.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01100101155.53"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "\u00ab Neurophysiologie Respiratoire Exp\u00e9rimentale et Clinique \u00bb, UMR-S 1158 Inserm-UPMC, Paris, France", 
          "id": "http://www.grid.ac/institutes/grid.7429.8", 
          "name": [
            "Unit\u00e9 de r\u00e9animation et de surveillance continue, service de pneumologie et r\u00e9animation m\u00e9dicale, groupe hospitalier Piti\u00e9-Salp\u00eatri\u00e8re, Paris, France", 
            "\u00ab Neurophysiologie Respiratoire Exp\u00e9rimentale et Clinique \u00bb, UMR-S 1158 Inserm-UPMC, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Similowski", 
        "givenName": "T.", 
        "id": "sg:person.01235111105.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01235111105.45"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "\u00ab Neurophysiologie Respiratoire Exp\u00e9rimentale et Clinique \u00bb, UMR-S 1158 Inserm-UPMC, Paris, France", 
          "id": "http://www.grid.ac/institutes/grid.7429.8", 
          "name": [
            "Unit\u00e9 de r\u00e9animation et de surveillance continue, service de pneumologie et r\u00e9animation m\u00e9dicale, groupe hospitalier Piti\u00e9-Salp\u00eatri\u00e8re, Paris, France", 
            "\u00ab Neurophysiologie Respiratoire Exp\u00e9rimentale et Clinique \u00bb, UMR-S 1158 Inserm-UPMC, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Demoule", 
        "givenName": "A.", 
        "id": "sg:person.0673253666.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0673253666.83"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-1-4612-0823-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050610527", 
          "https://doi.org/10.1007/978-1-4612-0823-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/71012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006785474", 
          "https://doi.org/10.1038/71012"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00134-013-2937-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051849180", 
          "https://doi.org/10.1007/s00134-013-2937-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00134-003-1768-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007218879", 
          "https://doi.org/10.1007/s00134-003-1768-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00134-003-2073-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026539278", 
          "https://doi.org/10.1007/s00134-003-2073-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/30130", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004108480", 
          "https://doi.org/10.1038/30130"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00134-011-2433-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051413231", 
          "https://doi.org/10.1007/s00134-011-2433-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00134-009-1665-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002147120", 
          "https://doi.org/10.1007/s00134-009-1665-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s001340050954", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007466500", 
          "https://doi.org/10.1007/s001340050954"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00134-008-1209-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029491849", 
          "https://doi.org/10.1007/s00134-008-1209-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s001340000758", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036778451", 
          "https://doi.org/10.1007/s001340000758"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014-01-07", 
    "datePublishedReg": "2014-01-07", 
    "description": "Ventilation is not monotonous. In contrast, the breathing pattern components vary with time, not only with respect to homeostatic adjustment needs, but also from one cycle to another (often referred to as the \u201canharmonic\u201d period). These breath-by-breath variations in tidal volume and its components are a result of the complex and chaotic nature \u2014 in mathematical terms \u2014 of the central ventilator command that creates the tidal volume. Respiratory variability reflects \u201chealthy\u2019 breathing, whereas decreasing variability of the breathing pattern components is a reflection of \u201cpoor health\u201d. This decrease may be due to central command changes or, it may be due to the \u201cfiltering\u201d of the central variability changes in regards to the mechanical loads: the complexity of the ventilatory flow and its breath-by-breath variability is related to both the neuro-mechanical coupling and the load-capacity adequacy. Thus, in intensive care, low ventilatory variability predicts mechanical ventilation weaning failure and is also an independent risk factor of death. Moreover, in animal models, the addition of extrinsic variability has shown improvements in both lung mechanics and gas exchange. The restoration of a natural variability through new mechanical ventilation modes may prove beneficial.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s13546-014-0843-z", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1295852", 
        "issn": [
          "2496-6142", 
          "1951-6959"
        ], 
        "name": "M\u00e9decine Intensive R\u00e9animation", 
        "publisher": "Lavoisier", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "23"
      }
    ], 
    "keywords": [
      "breathing pattern components", 
      "tidal volume", 
      "independent risk factor", 
      "mechanical ventilation modes", 
      "weaning failure", 
      "intensive care", 
      "lung mechanics", 
      "risk factors", 
      "ventilatory variability", 
      "animal models", 
      "poor health", 
      "respiratory variability", 
      "breath variability", 
      "ventilatory flow", 
      "breath variation", 
      "ventilation mode", 
      "breath", 
      "pattern components", 
      "gas exchange", 
      "r\u00e9animation", 
      "variability changes", 
      "breathing", 
      "care", 
      "ventilation", 
      "death", 
      "health", 
      "volume", 
      "failure", 
      "changes", 
      "variability", 
      "factors", 
      "decrease", 
      "restoration", 
      "contrast", 
      "adequacy", 
      "improvement", 
      "regard", 
      "need", 
      "components", 
      "mechanical load", 
      "addition", 
      "time", 
      "adjustment needs", 
      "results", 
      "cycle", 
      "command changes", 
      "model", 
      "respect", 
      "extrinsic variability", 
      "load", 
      "variation", 
      "flow", 
      "terms", 
      "nature", 
      "exchange", 
      "command", 
      "mode", 
      "complexity", 
      "mechanics", 
      "reflection", 
      "coupling", 
      "chaotic nature", 
      "natural variability", 
      "mathematical terms", 
      "filtering"
    ], 
    "name": "Variabilit\u00e9 ventilatoire et assistance ventilatoire en r\u00e9animation", 
    "pagination": "17-24", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1052679472"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s13546-014-0843-z"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s13546-014-0843-z", 
      "https://app.dimensions.ai/details/publication/pub.1052679472"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-10-01T06:39", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_637.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s13546-014-0843-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s13546-014-0843-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s13546-014-0843-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s13546-014-0843-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s13546-014-0843-z'


 

This table displays all metadata directly associated to this object as RDF triples.

195 TRIPLES      21 PREDICATES      100 URIs      81 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s13546-014-0843-z schema:about anzsrc-for:11
2 anzsrc-for:1116
3 schema:author Na692aa547b91428e8ace1fe38c064f08
4 schema:citation sg:pub.10.1007/978-1-4612-0823-5
5 sg:pub.10.1007/s00134-003-1768-1
6 sg:pub.10.1007/s00134-003-2073-8
7 sg:pub.10.1007/s00134-008-1209-2
8 sg:pub.10.1007/s00134-009-1665-3
9 sg:pub.10.1007/s00134-011-2433-8
10 sg:pub.10.1007/s00134-013-2937-5
11 sg:pub.10.1007/s001340000758
12 sg:pub.10.1007/s001340050954
13 sg:pub.10.1038/30130
14 sg:pub.10.1038/71012
15 schema:datePublished 2014-01-07
16 schema:datePublishedReg 2014-01-07
17 schema:description Ventilation is not monotonous. In contrast, the breathing pattern components vary with time, not only with respect to homeostatic adjustment needs, but also from one cycle to another (often referred to as the “anharmonic” period). These breath-by-breath variations in tidal volume and its components are a result of the complex and chaotic nature — in mathematical terms — of the central ventilator command that creates the tidal volume. Respiratory variability reflects “healthy’ breathing, whereas decreasing variability of the breathing pattern components is a reflection of “poor health”. This decrease may be due to central command changes or, it may be due to the “filtering” of the central variability changes in regards to the mechanical loads: the complexity of the ventilatory flow and its breath-by-breath variability is related to both the neuro-mechanical coupling and the load-capacity adequacy. Thus, in intensive care, low ventilatory variability predicts mechanical ventilation weaning failure and is also an independent risk factor of death. Moreover, in animal models, the addition of extrinsic variability has shown improvements in both lung mechanics and gas exchange. The restoration of a natural variability through new mechanical ventilation modes may prove beneficial.
18 schema:genre article
19 schema:isAccessibleForFree true
20 schema:isPartOf N58a8fb567c784245a99a7ef906da1458
21 Nfaef7d6e3853433ca0753b1e346bdf9c
22 sg:journal.1295852
23 schema:keywords addition
24 adequacy
25 adjustment needs
26 animal models
27 breath
28 breath variability
29 breath variation
30 breathing
31 breathing pattern components
32 care
33 changes
34 chaotic nature
35 command
36 command changes
37 complexity
38 components
39 contrast
40 coupling
41 cycle
42 death
43 decrease
44 exchange
45 extrinsic variability
46 factors
47 failure
48 filtering
49 flow
50 gas exchange
51 health
52 improvement
53 independent risk factor
54 intensive care
55 load
56 lung mechanics
57 mathematical terms
58 mechanical load
59 mechanical ventilation modes
60 mechanics
61 mode
62 model
63 natural variability
64 nature
65 need
66 pattern components
67 poor health
68 reflection
69 regard
70 respect
71 respiratory variability
72 restoration
73 results
74 risk factors
75 réanimation
76 terms
77 tidal volume
78 time
79 variability
80 variability changes
81 variation
82 ventilation
83 ventilation mode
84 ventilatory flow
85 ventilatory variability
86 volume
87 weaning failure
88 schema:name Variabilité ventilatoire et assistance ventilatoire en réanimation
89 schema:pagination 17-24
90 schema:productId N403fb05fc90042d18a99dd71a1a95cfe
91 Na2d019b2fa8f457e9f89e02d67d353c0
92 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052679472
93 https://doi.org/10.1007/s13546-014-0843-z
94 schema:sdDatePublished 2022-10-01T06:39
95 schema:sdLicense https://scigraph.springernature.com/explorer/license/
96 schema:sdPublisher N7e2c8ba6449f4c57a6dbc21b9af1a666
97 schema:url https://doi.org/10.1007/s13546-014-0843-z
98 sgo:license sg:explorer/license/
99 sgo:sdDataset articles
100 rdf:type schema:ScholarlyArticle
101 N403fb05fc90042d18a99dd71a1a95cfe schema:name dimensions_id
102 schema:value pub.1052679472
103 rdf:type schema:PropertyValue
104 N58a8fb567c784245a99a7ef906da1458 schema:issueNumber 1
105 rdf:type schema:PublicationIssue
106 N69bead55b48d44cda6e016f78eee8cf5 rdf:first sg:person.01235111105.45
107 rdf:rest Nfca012d565744b158b008e277aae8b76
108 N7621486168de425aa7ec2d9e58e655fe rdf:first sg:person.01100101155.53
109 rdf:rest N69bead55b48d44cda6e016f78eee8cf5
110 N7e2c8ba6449f4c57a6dbc21b9af1a666 schema:name Springer Nature - SN SciGraph project
111 rdf:type schema:Organization
112 Na2d019b2fa8f457e9f89e02d67d353c0 schema:name doi
113 schema:value 10.1007/s13546-014-0843-z
114 rdf:type schema:PropertyValue
115 Na692aa547b91428e8ace1fe38c064f08 rdf:first sg:person.01234316166.01
116 rdf:rest Ndb5e2cdf8a0b44cdbea91db338cfc271
117 Ndb5e2cdf8a0b44cdbea91db338cfc271 rdf:first sg:person.0672405325.65
118 rdf:rest N7621486168de425aa7ec2d9e58e655fe
119 Nfaef7d6e3853433ca0753b1e346bdf9c schema:volumeNumber 23
120 rdf:type schema:PublicationVolume
121 Nfca012d565744b158b008e277aae8b76 rdf:first sg:person.0673253666.83
122 rdf:rest rdf:nil
123 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
124 schema:name Medical and Health Sciences
125 rdf:type schema:DefinedTerm
126 anzsrc-for:1116 schema:inDefinedTermSet anzsrc-for:
127 schema:name Medical Physiology
128 rdf:type schema:DefinedTerm
129 sg:journal.1295852 schema:issn 1951-6959
130 2496-6142
131 schema:name Médecine Intensive Réanimation
132 schema:publisher Lavoisier
133 rdf:type schema:Periodical
134 sg:person.01100101155.53 schema:affiliation grid-institutes:grid.7429.8
135 schema:familyName Kindler
136 schema:givenName F.
137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01100101155.53
138 rdf:type schema:Person
139 sg:person.01234316166.01 schema:affiliation grid-institutes:grid.7429.8
140 schema:familyName Schmidt
141 schema:givenName M.
142 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01234316166.01
143 rdf:type schema:Person
144 sg:person.01235111105.45 schema:affiliation grid-institutes:grid.7429.8
145 schema:familyName Similowski
146 schema:givenName T.
147 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01235111105.45
148 rdf:type schema:Person
149 sg:person.0672405325.65 schema:affiliation grid-institutes:grid.7429.8
150 schema:familyName Cecchini
151 schema:givenName J.
152 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0672405325.65
153 rdf:type schema:Person
154 sg:person.0673253666.83 schema:affiliation grid-institutes:grid.7429.8
155 schema:familyName Demoule
156 schema:givenName A.
157 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0673253666.83
158 rdf:type schema:Person
159 sg:pub.10.1007/978-1-4612-0823-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050610527
160 https://doi.org/10.1007/978-1-4612-0823-5
161 rdf:type schema:CreativeWork
162 sg:pub.10.1007/s00134-003-1768-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007218879
163 https://doi.org/10.1007/s00134-003-1768-1
164 rdf:type schema:CreativeWork
165 sg:pub.10.1007/s00134-003-2073-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026539278
166 https://doi.org/10.1007/s00134-003-2073-8
167 rdf:type schema:CreativeWork
168 sg:pub.10.1007/s00134-008-1209-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029491849
169 https://doi.org/10.1007/s00134-008-1209-2
170 rdf:type schema:CreativeWork
171 sg:pub.10.1007/s00134-009-1665-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002147120
172 https://doi.org/10.1007/s00134-009-1665-3
173 rdf:type schema:CreativeWork
174 sg:pub.10.1007/s00134-011-2433-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051413231
175 https://doi.org/10.1007/s00134-011-2433-8
176 rdf:type schema:CreativeWork
177 sg:pub.10.1007/s00134-013-2937-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051849180
178 https://doi.org/10.1007/s00134-013-2937-5
179 rdf:type schema:CreativeWork
180 sg:pub.10.1007/s001340000758 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036778451
181 https://doi.org/10.1007/s001340000758
182 rdf:type schema:CreativeWork
183 sg:pub.10.1007/s001340050954 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007466500
184 https://doi.org/10.1007/s001340050954
185 rdf:type schema:CreativeWork
186 sg:pub.10.1038/30130 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004108480
187 https://doi.org/10.1038/30130
188 rdf:type schema:CreativeWork
189 sg:pub.10.1038/71012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006785474
190 https://doi.org/10.1038/71012
191 rdf:type schema:CreativeWork
192 grid-institutes:grid.7429.8 schema:alternateName « Neurophysiologie Respiratoire Expérimentale et Clinique », UMR-S 1158 Inserm-UPMC, Paris, France
193 schema:name Unité de réanimation et de surveillance continue, service de pneumologie et réanimation médicale, groupe hospitalier Pitié-Salpêtrière, Paris, France
194 « Neurophysiologie Respiratoire Expérimentale et Clinique », UMR-S 1158 Inserm-UPMC, Paris, France
195 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...