Synthesis of Iron Oxide Nanoparticles Optimized by Design of Experiments View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-02

AUTHORS

Nathanne C. V. Rost, Fatima M. Broca, Giulia C. Gonçalves, Marcela A. Cândido, Maiara L. Castilho, Leandro J. Raniero

ABSTRACT

Magnetic iron oxide nanoparticles have been widely studied for technological and biomedical applications due to its small size and the possibility of functionalizing the surface with intended molecules. Magnetite is the most used phase because of superparamagnetic characteristic, and it is synthesized by co-precipitation, starting from ferrous and ferric ions in alkaline media. However, depending on parameters of chemical reactions, such as molar ratio between iron and hydroxyl groups, stirring rate, and temperature, different iron oxide structures are formed through distinct pathways. Since several variables can affect the size, chemical composition, and crystalline structure of iron oxide nanoparticles during the synthesis, it is very important to apply experimental routines with a well-defined protocol and planning practical steps can significantly improve the quality of products. Plackett-Burman methodology from design of experiments is a filtration analysis, used in the initial stages of a process to investigate the main effects of factors over a characteristic of the final material. In this work, Plackett-Burman technique was employed in order to optimize bare iron oxide nanoparticle production by co-precipitation method, relating the different crystalline phases produced to the experimental routine. Dynamic light scattering, Fourier transform infrared spectroscopy, and X-ray diffractometry were used to characterize the samples. More... »

PAGES

1-6

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s13538-018-0616-2

DOI

http://dx.doi.org/10.1007/s13538-018-0616-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1109889297


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Universidade do Vale do Para\u00edba", 
          "id": "https://www.grid.ac/institutes/grid.412300.4", 
          "name": [
            "Laborat\u00f3rio de Nanossensores, Instituto de Pesquisa e Desenvolvimento, Universidade do Vale do Para\u00edba, Av. Shishima Hifumi, 12244-000, S\u00e3o Jos\u00e9 dos Campos, Brazil"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rost", 
        "givenName": "Nathanne C. V.", 
        "id": "sg:person.0661303315.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0661303315.26"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Universidade do Vale do Para\u00edba", 
          "id": "https://www.grid.ac/institutes/grid.412300.4", 
          "name": [
            "Laborat\u00f3rio de Nanossensores, Instituto de Pesquisa e Desenvolvimento, Universidade do Vale do Para\u00edba, Av. Shishima Hifumi, 12244-000, S\u00e3o Jos\u00e9 dos Campos, Brazil"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Broca", 
        "givenName": "Fatima M.", 
        "id": "sg:person.012175252646.69", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012175252646.69"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Universidade do Vale do Para\u00edba", 
          "id": "https://www.grid.ac/institutes/grid.412300.4", 
          "name": [
            "Laborat\u00f3rio de Nanossensores, Instituto de Pesquisa e Desenvolvimento, Universidade do Vale do Para\u00edba, Av. Shishima Hifumi, 12244-000, S\u00e3o Jos\u00e9 dos Campos, Brazil"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gon\u00e7alves", 
        "givenName": "Giulia C.", 
        "id": "sg:person.011331557046.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011331557046.33"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Universidade do Vale do Para\u00edba", 
          "id": "https://www.grid.ac/institutes/grid.412300.4", 
          "name": [
            "Laborat\u00f3rio de Nanossensores, Instituto de Pesquisa e Desenvolvimento, Universidade do Vale do Para\u00edba, Av. Shishima Hifumi, 12244-000, S\u00e3o Jos\u00e9 dos Campos, Brazil"
          ], 
          "type": "Organization"
        }, 
        "familyName": "C\u00e2ndido", 
        "givenName": "Marcela A.", 
        "id": "sg:person.014660163762.86", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014660163762.86"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Universidade do Vale do Para\u00edba", 
          "id": "https://www.grid.ac/institutes/grid.412300.4", 
          "name": [
            "Laborat\u00f3rio de Bionanotecnologia, Instituto de Pesquisa e Desenvolvimento, Universidade do Vale do Para\u00edba, Av. Shishima Hifumi, 12244-000, S\u00e3o Jos\u00e9 dos Campos, Brazil"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Castilho", 
        "givenName": "Maiara L.", 
        "id": "sg:person.01061445320.75", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01061445320.75"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Universidade do Vale do Para\u00edba", 
          "id": "https://www.grid.ac/institutes/grid.412300.4", 
          "name": [
            "Laborat\u00f3rio de Nanossensores, Instituto de Pesquisa e Desenvolvimento, Universidade do Vale do Para\u00edba, Av. Shishima Hifumi, 12244-000, S\u00e3o Jos\u00e9 dos Campos, Brazil"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Raniero", 
        "givenName": "Leandro J.", 
        "id": "sg:person.01310342162.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01310342162.24"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00128-015-1633-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003132327", 
          "https://doi.org/10.1007/s00128-015-1633-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tmag.2010.2076824", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003837375"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.pcrysgrow.2008.08.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003904236"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jpln.19921550515", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008614717"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jhazmat.2016.06.060", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009408743"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/ma6125549", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009444053"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0166-6622(92)80247-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015074504"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/b908777j", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018686558"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/b908777j", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018686558"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1468-6996/16/2/023501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019651734"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0010-938x(91)90049-u", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023821216"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0010-938x(91)90049-u", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023821216"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmmm.2016.02.076", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025887486"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1556-276x-8-381", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028650847", 
          "https://doi.org/10.1186/1556-276x-8-381"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cplett.2003.10.033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033651566"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jpcs.2008.03.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033946887"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jpcs.2008.10.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044587483"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3389/feart.2016.00028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047642745"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0992-4361(99)80017-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048206449"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jallcom.2009.08.087", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050804353"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acs.cgd.5b00475", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055083330"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/es4043275", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055507075"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp211843g", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056087206"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp803016n", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056108221"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp803016n", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056108221"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tmag.2011.2173313", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061684212"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1346/ccmn.1994.0420610", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065020098"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1346/ccmn.1994.0420610", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065020098", 
          "https://doi.org/10.1346/ccmn.1994.0420610"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00269-017-0897-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085445417", 
          "https://doi.org/10.1007/s00269-017-0897-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00269-017-0897-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085445417", 
          "https://doi.org/10.1007/s00269-017-0897-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ultramic.2017.07.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090349417"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-02", 
    "datePublishedReg": "2019-02-01", 
    "description": "Magnetic iron oxide nanoparticles have been widely studied for technological and biomedical applications due to its small size and the possibility of functionalizing the surface with intended molecules. Magnetite is the most used phase because of superparamagnetic characteristic, and it is synthesized by co-precipitation, starting from ferrous and ferric ions in alkaline media. However, depending on parameters of chemical reactions, such as molar ratio between iron and hydroxyl groups, stirring rate, and temperature, different iron oxide structures are formed through distinct pathways. Since several variables can affect the size, chemical composition, and crystalline structure of iron oxide nanoparticles during the synthesis, it is very important to apply experimental routines with a well-defined protocol and planning practical steps can significantly improve the quality of products. Plackett-Burman methodology from design of experiments is a filtration analysis, used in the initial stages of a process to investigate the main effects of factors over a characteristic of the final material. In this work, Plackett-Burman technique was employed in order to optimize bare iron oxide nanoparticle production by co-precipitation method, relating the different crystalline phases produced to the experimental routine. Dynamic light scattering, Fourier transform infrared spectroscopy, and X-ray diffractometry were used to characterize the samples.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s13538-018-0616-2", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.4476533", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1136035", 
        "issn": [
          "0103-9733", 
          "1678-4448"
        ], 
        "name": "Brazilian Journal of Physics", 
        "type": "Periodical"
      }
    ], 
    "name": "Synthesis of Iron Oxide Nanoparticles Optimized by Design of Experiments", 
    "pagination": "1-6", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "49818853ec2a37b66a16b53ce697559427ec28c32f0060dec73f4893267610a7"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s13538-018-0616-2"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1109889297"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s13538-018-0616-2", 
      "https://app.dimensions.ai/details/publication/pub.1109889297"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T08:07", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000265_0000000265/records_67373_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs13538-018-0616-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s13538-018-0616-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s13538-018-0616-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s13538-018-0616-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s13538-018-0616-2'


 

This table displays all metadata directly associated to this object as RDF triples.

178 TRIPLES      21 PREDICATES      52 URIs      17 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s13538-018-0616-2 schema:about anzsrc-for:03
2 anzsrc-for:0306
3 schema:author Na766f735a8a44235aa0e736c6bc47721
4 schema:citation sg:pub.10.1007/s00128-015-1633-2
5 sg:pub.10.1007/s00269-017-0897-y
6 sg:pub.10.1186/1556-276x-8-381
7 sg:pub.10.1346/ccmn.1994.0420610
8 https://doi.org/10.1002/jpln.19921550515
9 https://doi.org/10.1016/0010-938x(91)90049-u
10 https://doi.org/10.1016/0166-6622(92)80247-y
11 https://doi.org/10.1016/j.cplett.2003.10.033
12 https://doi.org/10.1016/j.jallcom.2009.08.087
13 https://doi.org/10.1016/j.jhazmat.2016.06.060
14 https://doi.org/10.1016/j.jmmm.2016.02.076
15 https://doi.org/10.1016/j.jpcs.2008.03.010
16 https://doi.org/10.1016/j.jpcs.2008.10.001
17 https://doi.org/10.1016/j.pcrysgrow.2008.08.003
18 https://doi.org/10.1016/j.ultramic.2017.07.001
19 https://doi.org/10.1016/s0992-4361(99)80017-4
20 https://doi.org/10.1021/acs.cgd.5b00475
21 https://doi.org/10.1021/es4043275
22 https://doi.org/10.1021/jp211843g
23 https://doi.org/10.1021/jp803016n
24 https://doi.org/10.1039/b908777j
25 https://doi.org/10.1088/1468-6996/16/2/023501
26 https://doi.org/10.1109/tmag.2010.2076824
27 https://doi.org/10.1109/tmag.2011.2173313
28 https://doi.org/10.1346/ccmn.1994.0420610
29 https://doi.org/10.3389/feart.2016.00028
30 https://doi.org/10.3390/ma6125549
31 schema:datePublished 2019-02
32 schema:datePublishedReg 2019-02-01
33 schema:description Magnetic iron oxide nanoparticles have been widely studied for technological and biomedical applications due to its small size and the possibility of functionalizing the surface with intended molecules. Magnetite is the most used phase because of superparamagnetic characteristic, and it is synthesized by co-precipitation, starting from ferrous and ferric ions in alkaline media. However, depending on parameters of chemical reactions, such as molar ratio between iron and hydroxyl groups, stirring rate, and temperature, different iron oxide structures are formed through distinct pathways. Since several variables can affect the size, chemical composition, and crystalline structure of iron oxide nanoparticles during the synthesis, it is very important to apply experimental routines with a well-defined protocol and planning practical steps can significantly improve the quality of products. Plackett-Burman methodology from design of experiments is a filtration analysis, used in the initial stages of a process to investigate the main effects of factors over a characteristic of the final material. In this work, Plackett-Burman technique was employed in order to optimize bare iron oxide nanoparticle production by co-precipitation method, relating the different crystalline phases produced to the experimental routine. Dynamic light scattering, Fourier transform infrared spectroscopy, and X-ray diffractometry were used to characterize the samples.
34 schema:genre research_article
35 schema:inLanguage en
36 schema:isAccessibleForFree false
37 schema:isPartOf sg:journal.1136035
38 schema:name Synthesis of Iron Oxide Nanoparticles Optimized by Design of Experiments
39 schema:pagination 1-6
40 schema:productId N0ded4067c12d491d85e8d60f4c231377
41 N112b179ea8574939b62a99c60ce3c742
42 N98f1aa68ee1f4b9ca2a9611ab9a229f0
43 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109889297
44 https://doi.org/10.1007/s13538-018-0616-2
45 schema:sdDatePublished 2019-04-11T08:07
46 schema:sdLicense https://scigraph.springernature.com/explorer/license/
47 schema:sdPublisher Nda822ae55dff44c49eda50e4081cd038
48 schema:url https://link.springer.com/10.1007%2Fs13538-018-0616-2
49 sgo:license sg:explorer/license/
50 sgo:sdDataset articles
51 rdf:type schema:ScholarlyArticle
52 N0ded4067c12d491d85e8d60f4c231377 schema:name doi
53 schema:value 10.1007/s13538-018-0616-2
54 rdf:type schema:PropertyValue
55 N112b179ea8574939b62a99c60ce3c742 schema:name dimensions_id
56 schema:value pub.1109889297
57 rdf:type schema:PropertyValue
58 N43bb118efaca483e931267cfd6251fff rdf:first sg:person.012175252646.69
59 rdf:rest Na5a68de8b6324818949ed47b0108dadd
60 N5509520bf6fa487ca40bf2ec535a8f1a rdf:first sg:person.01310342162.24
61 rdf:rest rdf:nil
62 N738359a692f14ff3a6dd4eb446abd94f rdf:first sg:person.01061445320.75
63 rdf:rest N5509520bf6fa487ca40bf2ec535a8f1a
64 N98f1aa68ee1f4b9ca2a9611ab9a229f0 schema:name readcube_id
65 schema:value 49818853ec2a37b66a16b53ce697559427ec28c32f0060dec73f4893267610a7
66 rdf:type schema:PropertyValue
67 Na5a68de8b6324818949ed47b0108dadd rdf:first sg:person.011331557046.33
68 rdf:rest Ne7ad0bc494574562bf81126c8dea268d
69 Na766f735a8a44235aa0e736c6bc47721 rdf:first sg:person.0661303315.26
70 rdf:rest N43bb118efaca483e931267cfd6251fff
71 Nda822ae55dff44c49eda50e4081cd038 schema:name Springer Nature - SN SciGraph project
72 rdf:type schema:Organization
73 Ne7ad0bc494574562bf81126c8dea268d rdf:first sg:person.014660163762.86
74 rdf:rest N738359a692f14ff3a6dd4eb446abd94f
75 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
76 schema:name Chemical Sciences
77 rdf:type schema:DefinedTerm
78 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
79 schema:name Physical Chemistry (incl. Structural)
80 rdf:type schema:DefinedTerm
81 sg:grant.4476533 http://pending.schema.org/fundedItem sg:pub.10.1007/s13538-018-0616-2
82 rdf:type schema:MonetaryGrant
83 sg:journal.1136035 schema:issn 0103-9733
84 1678-4448
85 schema:name Brazilian Journal of Physics
86 rdf:type schema:Periodical
87 sg:person.01061445320.75 schema:affiliation https://www.grid.ac/institutes/grid.412300.4
88 schema:familyName Castilho
89 schema:givenName Maiara L.
90 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01061445320.75
91 rdf:type schema:Person
92 sg:person.011331557046.33 schema:affiliation https://www.grid.ac/institutes/grid.412300.4
93 schema:familyName Gonçalves
94 schema:givenName Giulia C.
95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011331557046.33
96 rdf:type schema:Person
97 sg:person.012175252646.69 schema:affiliation https://www.grid.ac/institutes/grid.412300.4
98 schema:familyName Broca
99 schema:givenName Fatima M.
100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012175252646.69
101 rdf:type schema:Person
102 sg:person.01310342162.24 schema:affiliation https://www.grid.ac/institutes/grid.412300.4
103 schema:familyName Raniero
104 schema:givenName Leandro J.
105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01310342162.24
106 rdf:type schema:Person
107 sg:person.014660163762.86 schema:affiliation https://www.grid.ac/institutes/grid.412300.4
108 schema:familyName Cândido
109 schema:givenName Marcela A.
110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014660163762.86
111 rdf:type schema:Person
112 sg:person.0661303315.26 schema:affiliation https://www.grid.ac/institutes/grid.412300.4
113 schema:familyName Rost
114 schema:givenName Nathanne C. V.
115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0661303315.26
116 rdf:type schema:Person
117 sg:pub.10.1007/s00128-015-1633-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003132327
118 https://doi.org/10.1007/s00128-015-1633-2
119 rdf:type schema:CreativeWork
120 sg:pub.10.1007/s00269-017-0897-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1085445417
121 https://doi.org/10.1007/s00269-017-0897-y
122 rdf:type schema:CreativeWork
123 sg:pub.10.1186/1556-276x-8-381 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028650847
124 https://doi.org/10.1186/1556-276x-8-381
125 rdf:type schema:CreativeWork
126 sg:pub.10.1346/ccmn.1994.0420610 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065020098
127 https://doi.org/10.1346/ccmn.1994.0420610
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1002/jpln.19921550515 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008614717
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1016/0010-938x(91)90049-u schema:sameAs https://app.dimensions.ai/details/publication/pub.1023821216
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1016/0166-6622(92)80247-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1015074504
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1016/j.cplett.2003.10.033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033651566
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1016/j.jallcom.2009.08.087 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050804353
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1016/j.jhazmat.2016.06.060 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009408743
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1016/j.jmmm.2016.02.076 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025887486
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1016/j.jpcs.2008.03.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033946887
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1016/j.jpcs.2008.10.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044587483
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1016/j.pcrysgrow.2008.08.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003904236
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1016/j.ultramic.2017.07.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090349417
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1016/s0992-4361(99)80017-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048206449
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1021/acs.cgd.5b00475 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055083330
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1021/es4043275 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055507075
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1021/jp211843g schema:sameAs https://app.dimensions.ai/details/publication/pub.1056087206
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1021/jp803016n schema:sameAs https://app.dimensions.ai/details/publication/pub.1056108221
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1039/b908777j schema:sameAs https://app.dimensions.ai/details/publication/pub.1018686558
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1088/1468-6996/16/2/023501 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019651734
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1109/tmag.2010.2076824 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003837375
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1109/tmag.2011.2173313 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061684212
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1346/ccmn.1994.0420610 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065020098
170 rdf:type schema:CreativeWork
171 https://doi.org/10.3389/feart.2016.00028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047642745
172 rdf:type schema:CreativeWork
173 https://doi.org/10.3390/ma6125549 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009444053
174 rdf:type schema:CreativeWork
175 https://www.grid.ac/institutes/grid.412300.4 schema:alternateName Universidade do Vale do Paraíba
176 schema:name Laboratório de Bionanotecnologia, Instituto de Pesquisa e Desenvolvimento, Universidade do Vale do Paraíba, Av. Shishima Hifumi, 12244-000, São José dos Campos, Brazil
177 Laboratório de Nanossensores, Instituto de Pesquisa e Desenvolvimento, Universidade do Vale do Paraíba, Av. Shishima Hifumi, 12244-000, São José dos Campos, Brazil
178 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...