Finding Topological Charges in Confined Ellipses View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-02

AUTHORS

S. Hashemi

ABSTRACT

The structure of a two-dimensional fluid confined in a circular cavity bounded by a hard wall is investigated using Monte Carlo simulation in NVT ensemble. The fluid consists of hard ellipses with two different aspect ratios. Average density and order parameter are calculated locally to show if any topological charge is formed. The magnitude, location, number of these topological charges, and also their dependence on the radius of the circular cavity are studied here. Different phases are formed by increasing packing fraction of the fluid and it has claimed that the existence and the kind of topological charges both depend on the ellipse’s interaction with the wall (planar or homeotropic), the radius of the circular cavity, and the elongation of particles. More... »

PAGES

1-11

References to SciGraph publications

  • 2012-11. Parallel transport and defects on nematic shells in CONTINUUM MECHANICS AND THERMODYNAMICS
  • 2013-12. Assembly and control of 3D nematic dipolar colloidal crystals in NATURE COMMUNICATIONS
  • 2006-06. Liquid-crystal defects and confinement in Yang-Mills theory in JETP LETTERS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s13538-018-0612-6

    DOI

    http://dx.doi.org/10.1007/s13538-018-0612-6

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1108054415


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Interdisciplinary Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "name": [
                "Department of Physics, Salman Farsi University of Kazerun, 73175-457, Kazerun, Iran"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hashemi", 
            "givenName": "S.", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1039/c3sm52650j", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000561429"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1098/rsta.2012.0266", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005020281"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1006267702", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1006267702", 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms2486", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007892269", 
              "https://doi.org/10.1038/ncomms2486"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/026782998207640", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013197627"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.aaf4260", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013550704"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.molliq.2012.08.014", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014772786"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.1015831108", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017024193"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.physa.2010.06.046", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017730620"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.62.5081", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023909856"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.62.5081", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023909856"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/02678290903362840", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026697554"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/s0021364006070022", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030915979", 
              "https://doi.org/10.1134/s0021364006070022"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.75.061709", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033260282"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.75.061709", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033260282"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.physleta.2016.07.025", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034267059"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.96.028002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035074284"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.96.028002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035074284"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00161-012-0259-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043726519", 
              "https://doi.org/10.1007/s00161-012-0259-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00161-012-0259-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043726519", 
              "https://doi.org/10.1007/s00161-012-0259-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.1102130108", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052373573"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0143-0807/24/4/366", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059035479"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.79.061703", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060739078"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.79.061703", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060739078"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.86.021703", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060743808"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.86.021703", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060743808"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1129660", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062453951"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/9783527613946", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1109492204"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-02", 
        "datePublishedReg": "2019-02-01", 
        "description": "The structure of a two-dimensional fluid confined in a circular cavity bounded by a hard wall is investigated using Monte Carlo simulation in NVT ensemble. The fluid consists of hard ellipses with two different aspect ratios. Average density and order parameter are calculated locally to show if any topological charge is formed. The magnitude, location, number of these topological charges, and also their dependence on the radius of the circular cavity are studied here. Different phases are formed by increasing packing fraction of the fluid and it has claimed that the existence and the kind of topological charges both depend on the ellipse\u2019s interaction with the wall (planar or homeotropic), the radius of the circular cavity, and the elongation of particles.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s13538-018-0612-6", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136035", 
            "issn": [
              "0103-9733", 
              "1678-4448"
            ], 
            "name": "Brazilian Journal of Physics", 
            "type": "Periodical"
          }
        ], 
        "name": "Finding Topological Charges in Confined Ellipses", 
        "pagination": "1-11", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "2d1fc2b348a64ae4e902c7d225e6b1513b70d644bb6c21f0d8a83e5593aafc24"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s13538-018-0612-6"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1108054415"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s13538-018-0612-6", 
          "https://app.dimensions.ai/details/publication/pub.1108054415"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T21:55", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8687_00000605.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs13538-018-0612-6"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s13538-018-0612-6'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s13538-018-0612-6'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s13538-018-0612-6'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s13538-018-0612-6'


     

    This table displays all metadata directly associated to this object as RDF triples.

    121 TRIPLES      21 PREDICATES      47 URIs      17 LITERALS      5 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s13538-018-0612-6 schema:about anzsrc-for:09
    2 anzsrc-for:0915
    3 schema:author N3731ed79ade3470e9065f04629038656
    4 schema:citation sg:pub.10.1007/s00161-012-0259-4
    5 sg:pub.10.1038/ncomms2486
    6 sg:pub.10.1134/s0021364006070022
    7 https://app.dimensions.ai/details/publication/pub.1006267702
    8 https://doi.org/10.1002/9783527613946
    9 https://doi.org/10.1016/j.molliq.2012.08.014
    10 https://doi.org/10.1016/j.physa.2010.06.046
    11 https://doi.org/10.1016/j.physleta.2016.07.025
    12 https://doi.org/10.1039/c3sm52650j
    13 https://doi.org/10.1073/pnas.1015831108
    14 https://doi.org/10.1073/pnas.1102130108
    15 https://doi.org/10.1080/02678290903362840
    16 https://doi.org/10.1080/026782998207640
    17 https://doi.org/10.1088/0143-0807/24/4/366
    18 https://doi.org/10.1098/rsta.2012.0266
    19 https://doi.org/10.1103/physreve.62.5081
    20 https://doi.org/10.1103/physreve.75.061709
    21 https://doi.org/10.1103/physreve.79.061703
    22 https://doi.org/10.1103/physreve.86.021703
    23 https://doi.org/10.1103/physrevlett.96.028002
    24 https://doi.org/10.1126/science.1129660
    25 https://doi.org/10.1126/science.aaf4260
    26 schema:datePublished 2019-02
    27 schema:datePublishedReg 2019-02-01
    28 schema:description The structure of a two-dimensional fluid confined in a circular cavity bounded by a hard wall is investigated using Monte Carlo simulation in NVT ensemble. The fluid consists of hard ellipses with two different aspect ratios. Average density and order parameter are calculated locally to show if any topological charge is formed. The magnitude, location, number of these topological charges, and also their dependence on the radius of the circular cavity are studied here. Different phases are formed by increasing packing fraction of the fluid and it has claimed that the existence and the kind of topological charges both depend on the ellipse’s interaction with the wall (planar or homeotropic), the radius of the circular cavity, and the elongation of particles.
    29 schema:genre research_article
    30 schema:inLanguage en
    31 schema:isAccessibleForFree false
    32 schema:isPartOf sg:journal.1136035
    33 schema:name Finding Topological Charges in Confined Ellipses
    34 schema:pagination 1-11
    35 schema:productId N2d855994f27e47e086a9e16d25bc74f5
    36 Ne6e4c2fa49774e328537b30bd24f1301
    37 Nee45907f62a84e3f86eb25d82621f4fe
    38 schema:sameAs https://app.dimensions.ai/details/publication/pub.1108054415
    39 https://doi.org/10.1007/s13538-018-0612-6
    40 schema:sdDatePublished 2019-04-10T21:55
    41 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    42 schema:sdPublisher Nce6a4f4923044a95a96a9d4ff5d9270d
    43 schema:url https://link.springer.com/10.1007%2Fs13538-018-0612-6
    44 sgo:license sg:explorer/license/
    45 sgo:sdDataset articles
    46 rdf:type schema:ScholarlyArticle
    47 N2d855994f27e47e086a9e16d25bc74f5 schema:name dimensions_id
    48 schema:value pub.1108054415
    49 rdf:type schema:PropertyValue
    50 N3731ed79ade3470e9065f04629038656 rdf:first Nc37da98660ad47ebb5850384f8a624c6
    51 rdf:rest rdf:nil
    52 Nc37da98660ad47ebb5850384f8a624c6 schema:affiliation Ne12934e1a48c4e4e9c41f4395499862e
    53 schema:familyName Hashemi
    54 schema:givenName S.
    55 rdf:type schema:Person
    56 Nce6a4f4923044a95a96a9d4ff5d9270d schema:name Springer Nature - SN SciGraph project
    57 rdf:type schema:Organization
    58 Ne12934e1a48c4e4e9c41f4395499862e schema:name Department of Physics, Salman Farsi University of Kazerun, 73175-457, Kazerun, Iran
    59 rdf:type schema:Organization
    60 Ne6e4c2fa49774e328537b30bd24f1301 schema:name doi
    61 schema:value 10.1007/s13538-018-0612-6
    62 rdf:type schema:PropertyValue
    63 Nee45907f62a84e3f86eb25d82621f4fe schema:name readcube_id
    64 schema:value 2d1fc2b348a64ae4e902c7d225e6b1513b70d644bb6c21f0d8a83e5593aafc24
    65 rdf:type schema:PropertyValue
    66 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    67 schema:name Engineering
    68 rdf:type schema:DefinedTerm
    69 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
    70 schema:name Interdisciplinary Engineering
    71 rdf:type schema:DefinedTerm
    72 sg:journal.1136035 schema:issn 0103-9733
    73 1678-4448
    74 schema:name Brazilian Journal of Physics
    75 rdf:type schema:Periodical
    76 sg:pub.10.1007/s00161-012-0259-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043726519
    77 https://doi.org/10.1007/s00161-012-0259-4
    78 rdf:type schema:CreativeWork
    79 sg:pub.10.1038/ncomms2486 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007892269
    80 https://doi.org/10.1038/ncomms2486
    81 rdf:type schema:CreativeWork
    82 sg:pub.10.1134/s0021364006070022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030915979
    83 https://doi.org/10.1134/s0021364006070022
    84 rdf:type schema:CreativeWork
    85 https://app.dimensions.ai/details/publication/pub.1006267702 schema:CreativeWork
    86 https://doi.org/10.1002/9783527613946 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109492204
    87 rdf:type schema:CreativeWork
    88 https://doi.org/10.1016/j.molliq.2012.08.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014772786
    89 rdf:type schema:CreativeWork
    90 https://doi.org/10.1016/j.physa.2010.06.046 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017730620
    91 rdf:type schema:CreativeWork
    92 https://doi.org/10.1016/j.physleta.2016.07.025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034267059
    93 rdf:type schema:CreativeWork
    94 https://doi.org/10.1039/c3sm52650j schema:sameAs https://app.dimensions.ai/details/publication/pub.1000561429
    95 rdf:type schema:CreativeWork
    96 https://doi.org/10.1073/pnas.1015831108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017024193
    97 rdf:type schema:CreativeWork
    98 https://doi.org/10.1073/pnas.1102130108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052373573
    99 rdf:type schema:CreativeWork
    100 https://doi.org/10.1080/02678290903362840 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026697554
    101 rdf:type schema:CreativeWork
    102 https://doi.org/10.1080/026782998207640 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013197627
    103 rdf:type schema:CreativeWork
    104 https://doi.org/10.1088/0143-0807/24/4/366 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059035479
    105 rdf:type schema:CreativeWork
    106 https://doi.org/10.1098/rsta.2012.0266 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005020281
    107 rdf:type schema:CreativeWork
    108 https://doi.org/10.1103/physreve.62.5081 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023909856
    109 rdf:type schema:CreativeWork
    110 https://doi.org/10.1103/physreve.75.061709 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033260282
    111 rdf:type schema:CreativeWork
    112 https://doi.org/10.1103/physreve.79.061703 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060739078
    113 rdf:type schema:CreativeWork
    114 https://doi.org/10.1103/physreve.86.021703 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060743808
    115 rdf:type schema:CreativeWork
    116 https://doi.org/10.1103/physrevlett.96.028002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035074284
    117 rdf:type schema:CreativeWork
    118 https://doi.org/10.1126/science.1129660 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062453951
    119 rdf:type schema:CreativeWork
    120 https://doi.org/10.1126/science.aaf4260 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013550704
    121 rdf:type schema:CreativeWork
     




    Preview window. Press ESC to close (or click here)


    ...