Variability Aspects of the Mars Surface Data from Summer to Winter Solstice: Viking Lander 1 Observations Revisited View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-02

AUTHORS

Mariza Pereira de Souza Echer, Margarete Oliveira Domingues, Odim Mendes, Ezequiel Echer, Walter Gonzalez

ABSTRACT

In this work, we revisited the meteorological datasets of temperature and pressure, recorded onboard the Viking Lander 1, evolving from summer to winter Martian solstice. The datasets were provided by the Viking Meteorology Experiment Team and we performed the study using a multiscale signal analysis technique based on an available wavelet transform methodology. Even in the presence of data gaps, the methodology provides the skill to perform the time-scale signal characterization. We highlighted the results with new features related to the non-stationary behavior in the data. The main spectral periods found in pressure data are 0.25 SOL (6.25 h), 0.33 SOL (8.3 h), 0.5 SOL (12.5 h), 1 SOL (25 h), 10.2 SOLS, a broad peak between 21 and 33 SOLS. In temperature, the main periods were 0.5 SOL (12.5 h), 1 SOL (25 h), and 32 and 64 SOLS. The correlation between the pressure and temperature data shows anti-correlation in the scales larger than 1.5 SOL, with a high determination coefficient (more than 64%). More... »

PAGES

1-8

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s13538-018-00623-8

DOI

http://dx.doi.org/10.1007/s13538-018-00623-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1110556255


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "National Institute for Space Research", 
          "id": "https://www.grid.ac/institutes/grid.419222.e", 
          "name": [
            "National Institute For Space Research (INPE), S\u00e3o Jos\u00e9 dos Campos, Brazil"
          ], 
          "type": "Organization"
        }, 
        "familyName": "de Souza Echer", 
        "givenName": "Mariza Pereira", 
        "id": "sg:person.014357152615.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014357152615.00"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institute for Space Research", 
          "id": "https://www.grid.ac/institutes/grid.419222.e", 
          "name": [
            "National Institute For Space Research (INPE), S\u00e3o Jos\u00e9 dos Campos, Brazil"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Domingues", 
        "givenName": "Margarete Oliveira", 
        "id": "sg:person.015623442101.93", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015623442101.93"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institute for Space Research", 
          "id": "https://www.grid.ac/institutes/grid.419222.e", 
          "name": [
            "National Institute For Space Research (INPE), S\u00e3o Jos\u00e9 dos Campos, Brazil"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mendes", 
        "givenName": "Odim", 
        "id": "sg:person.011315734177.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011315734177.22"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institute for Space Research", 
          "id": "https://www.grid.ac/institutes/grid.419222.e", 
          "name": [
            "National Institute For Space Research (INPE), S\u00e3o Jos\u00e9 dos Campos, Brazil"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Echer", 
        "givenName": "Ezequiel", 
        "id": "sg:person.016443172323.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016443172323.15"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institute for Space Research", 
          "id": "https://www.grid.ac/institutes/grid.419222.e", 
          "name": [
            "National Institute For Space Research (INPE), S\u00e3o Jos\u00e9 dos Campos, Brazil"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gonzalez", 
        "givenName": "Walter", 
        "id": "sg:person.015561446756.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015561446756.23"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1002/2014ja019894", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002032385"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/jb084ib06p02947", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003185970"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.asr.2005.02.097", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007761406"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/gl007i003p00197", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008012803"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/jb084ib14p08487", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013651998"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/js082i028p04559", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015640511"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/rg012i004p00730", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015809056"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2000je001306", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046242857"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/gl005i008p00715", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046415569"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1365-8711.2001.04812.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047291188"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0019-1035(82)90127-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047692891"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0019-1035(82)90127-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047692891"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.532485", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058108816"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/304206", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058611730"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.194.4260.78", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062514188"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.194.4271.1277", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062514497"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.194.4271.1352", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062514515"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s13538-017-0486-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083883886", 
          "https://doi.org/10.1007/s13538-017-0486-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s13538-017-0486-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083883886", 
          "https://doi.org/10.1007/s13538-017-0486-z"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-02", 
    "datePublishedReg": "2019-02-01", 
    "description": "In this work, we revisited the meteorological datasets of temperature and pressure, recorded onboard the Viking Lander 1, evolving from summer to winter Martian solstice. The datasets were provided by the Viking Meteorology Experiment Team and we performed the study using a multiscale signal analysis technique based on an available wavelet transform methodology. Even in the presence of data gaps, the methodology provides the skill to perform the time-scale signal characterization. We highlighted the results with new features related to the non-stationary behavior in the data. The main spectral periods found in pressure data are 0.25 SOL (6.25 h), 0.33 SOL (8.3 h), 0.5 SOL (12.5 h), 1 SOL (25 h), 10.2 SOLS, a broad peak between 21 and 33 SOLS. In temperature, the main periods were 0.5 SOL (12.5 h), 1 SOL (25 h), and 32 and 64 SOLS. The correlation between the pressure and temperature data shows anti-correlation in the scales larger than 1.5 SOL, with a high determination coefficient (more than 64%).", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s13538-018-00623-8", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136035", 
        "issn": [
          "0103-9733", 
          "1678-4448"
        ], 
        "name": "Brazilian Journal of Physics", 
        "type": "Periodical"
      }
    ], 
    "name": "Variability Aspects of the Mars Surface Data from Summer to Winter Solstice: Viking Lander 1 Observations Revisited", 
    "pagination": "1-8", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "506af00342751038dfaf218f566629ded1aba81cafd6dd562b6303c22e9769ae"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s13538-018-00623-8"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1110556255"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s13538-018-00623-8", 
      "https://app.dimensions.ai/details/publication/pub.1110556255"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T08:23", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000293_0000000293/records_12012_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs13538-018-00623-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s13538-018-00623-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s13538-018-00623-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s13538-018-00623-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s13538-018-00623-8'


 

This table displays all metadata directly associated to this object as RDF triples.

135 TRIPLES      21 PREDICATES      42 URIs      17 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s13538-018-00623-8 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Neeae98e1d7814e159c0f086d4ec87312
4 schema:citation sg:pub.10.1007/s13538-017-0486-z
5 https://doi.org/10.1002/2014ja019894
6 https://doi.org/10.1016/0019-1035(82)90127-0
7 https://doi.org/10.1016/j.asr.2005.02.097
8 https://doi.org/10.1029/2000je001306
9 https://doi.org/10.1029/gl005i008p00715
10 https://doi.org/10.1029/gl007i003p00197
11 https://doi.org/10.1029/jb084ib06p02947
12 https://doi.org/10.1029/jb084ib14p08487
13 https://doi.org/10.1029/js082i028p04559
14 https://doi.org/10.1029/rg012i004p00730
15 https://doi.org/10.1046/j.1365-8711.2001.04812.x
16 https://doi.org/10.1063/1.532485
17 https://doi.org/10.1086/304206
18 https://doi.org/10.1126/science.194.4260.78
19 https://doi.org/10.1126/science.194.4271.1277
20 https://doi.org/10.1126/science.194.4271.1352
21 schema:datePublished 2019-02
22 schema:datePublishedReg 2019-02-01
23 schema:description In this work, we revisited the meteorological datasets of temperature and pressure, recorded onboard the Viking Lander 1, evolving from summer to winter Martian solstice. The datasets were provided by the Viking Meteorology Experiment Team and we performed the study using a multiscale signal analysis technique based on an available wavelet transform methodology. Even in the presence of data gaps, the methodology provides the skill to perform the time-scale signal characterization. We highlighted the results with new features related to the non-stationary behavior in the data. The main spectral periods found in pressure data are 0.25 SOL (6.25 h), 0.33 SOL (8.3 h), 0.5 SOL (12.5 h), 1 SOL (25 h), 10.2 SOLS, a broad peak between 21 and 33 SOLS. In temperature, the main periods were 0.5 SOL (12.5 h), 1 SOL (25 h), and 32 and 64 SOLS. The correlation between the pressure and temperature data shows anti-correlation in the scales larger than 1.5 SOL, with a high determination coefficient (more than 64%).
24 schema:genre research_article
25 schema:inLanguage en
26 schema:isAccessibleForFree false
27 schema:isPartOf sg:journal.1136035
28 schema:name Variability Aspects of the Mars Surface Data from Summer to Winter Solstice: Viking Lander 1 Observations Revisited
29 schema:pagination 1-8
30 schema:productId N1851f63d0f2d4997af2edb393be6cb79
31 N2192f1d94bde423387f5614e864d5b75
32 N33d72e1ca20148dd947a6f8b80694cab
33 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110556255
34 https://doi.org/10.1007/s13538-018-00623-8
35 schema:sdDatePublished 2019-04-11T08:23
36 schema:sdLicense https://scigraph.springernature.com/explorer/license/
37 schema:sdPublisher N57a8baee615e44f1afaae6fedd386665
38 schema:url https://link.springer.com/10.1007%2Fs13538-018-00623-8
39 sgo:license sg:explorer/license/
40 sgo:sdDataset articles
41 rdf:type schema:ScholarlyArticle
42 N0daef721e7714112b101a02cc5f74d59 rdf:first sg:person.015561446756.23
43 rdf:rest rdf:nil
44 N1851f63d0f2d4997af2edb393be6cb79 schema:name dimensions_id
45 schema:value pub.1110556255
46 rdf:type schema:PropertyValue
47 N2192f1d94bde423387f5614e864d5b75 schema:name readcube_id
48 schema:value 506af00342751038dfaf218f566629ded1aba81cafd6dd562b6303c22e9769ae
49 rdf:type schema:PropertyValue
50 N33d72e1ca20148dd947a6f8b80694cab schema:name doi
51 schema:value 10.1007/s13538-018-00623-8
52 rdf:type schema:PropertyValue
53 N57a8baee615e44f1afaae6fedd386665 schema:name Springer Nature - SN SciGraph project
54 rdf:type schema:Organization
55 N6a545bd0130f4482b4bb1148517dfd98 rdf:first sg:person.016443172323.15
56 rdf:rest N0daef721e7714112b101a02cc5f74d59
57 Ne5cc86f98ec84478a8552389ce5797da rdf:first sg:person.015623442101.93
58 rdf:rest Nebb223483c984aedb4cec8fb93e136a5
59 Nebb223483c984aedb4cec8fb93e136a5 rdf:first sg:person.011315734177.22
60 rdf:rest N6a545bd0130f4482b4bb1148517dfd98
61 Neeae98e1d7814e159c0f086d4ec87312 rdf:first sg:person.014357152615.00
62 rdf:rest Ne5cc86f98ec84478a8552389ce5797da
63 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
64 schema:name Information and Computing Sciences
65 rdf:type schema:DefinedTerm
66 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
67 schema:name Artificial Intelligence and Image Processing
68 rdf:type schema:DefinedTerm
69 sg:journal.1136035 schema:issn 0103-9733
70 1678-4448
71 schema:name Brazilian Journal of Physics
72 rdf:type schema:Periodical
73 sg:person.011315734177.22 schema:affiliation https://www.grid.ac/institutes/grid.419222.e
74 schema:familyName Mendes
75 schema:givenName Odim
76 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011315734177.22
77 rdf:type schema:Person
78 sg:person.014357152615.00 schema:affiliation https://www.grid.ac/institutes/grid.419222.e
79 schema:familyName de Souza Echer
80 schema:givenName Mariza Pereira
81 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014357152615.00
82 rdf:type schema:Person
83 sg:person.015561446756.23 schema:affiliation https://www.grid.ac/institutes/grid.419222.e
84 schema:familyName Gonzalez
85 schema:givenName Walter
86 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015561446756.23
87 rdf:type schema:Person
88 sg:person.015623442101.93 schema:affiliation https://www.grid.ac/institutes/grid.419222.e
89 schema:familyName Domingues
90 schema:givenName Margarete Oliveira
91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015623442101.93
92 rdf:type schema:Person
93 sg:person.016443172323.15 schema:affiliation https://www.grid.ac/institutes/grid.419222.e
94 schema:familyName Echer
95 schema:givenName Ezequiel
96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016443172323.15
97 rdf:type schema:Person
98 sg:pub.10.1007/s13538-017-0486-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1083883886
99 https://doi.org/10.1007/s13538-017-0486-z
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1002/2014ja019894 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002032385
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1016/0019-1035(82)90127-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047692891
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1016/j.asr.2005.02.097 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007761406
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1029/2000je001306 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046242857
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1029/gl005i008p00715 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046415569
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1029/gl007i003p00197 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008012803
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1029/jb084ib06p02947 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003185970
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1029/jb084ib14p08487 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013651998
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1029/js082i028p04559 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015640511
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1029/rg012i004p00730 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015809056
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1046/j.1365-8711.2001.04812.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1047291188
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1063/1.532485 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058108816
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1086/304206 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058611730
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1126/science.194.4260.78 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062514188
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1126/science.194.4271.1277 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062514497
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1126/science.194.4271.1352 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062514515
132 rdf:type schema:CreativeWork
133 https://www.grid.ac/institutes/grid.419222.e schema:alternateName National Institute for Space Research
134 schema:name National Institute For Space Research (INPE), São José dos Campos, Brazil
135 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...