Derivation of Hamaker Dispersion Energy of Amorphous Carbon Surfaces in Contact with Liquids Using Photoelectron Energy-Loss Spectra View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-12

AUTHORS

Christian Godet, Denis David

ABSTRACT

Hamaker interaction energies and cutoff distances have been calculated for disordered carbon films, in contact with purely dispersive (diiodomethane) or polar (water) liquids, using their experimental dielectric functions ε (q, ω) obtained over a broad energy range. In contrast with previous works, a q-averaged <ε (q, ω) > q is derived from photoelectron energy-loss spectroscopy (XPS-PEELS) where the energy loss function (ELF) < Im[−1/ε (q, ω)] > q is a weighted average over allowed transferred wave vector values, q, given by the physics of bulk plasmon excitation. For microcrystalline diamond and amorphous carbon films with a wide range of (sp3/sp2 + sp3) hybridization, non-retarded Hamaker energies, A132 (L < 1 nm), were calculated in several configurations, and distance and wavenumber cutoff values were then calculated based on A132 and the dispersive work of adhesion obtained from contact angles. A geometric average approximation, H0 CVL = (H0 CVCH0 LVL)1/2, holds for the cutoff separation distances obtained for carbon-vacuum-liquid (CVL), carbon-vacuum-carbon (CVC) and liquid-vacuum-liquid (LVL) equilibrium configurations. The linear dependence found for ACVL, ACLC and ACLV values as a function of ACVC, for each liquid, allows predictive relationships for Hamaker energies (in any configuration) using experimental determination of the dispersive component of the surface tension, γCVd, and a guess value of the cutoff distance H0 CVC of the solid. Graphical Abstract Graphical Abstract More... »

PAGES

594-605

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s13538-017-0521-0

DOI

http://dx.doi.org/10.1007/s13538-017-0521-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1091381776


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institut de Physique de Rennes", 
          "id": "https://www.grid.ac/institutes/grid.461893.1", 
          "name": [
            "Institut de Physique de Rennes (CNRS UMR 6251), Universit\u00e9 Rennes 1, Campus Beaulieu - Bat. 11E - 35042, Rennes, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Godet", 
        "givenName": "Christian", 
        "id": "sg:person.013314511321.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013314511321.06"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Federal University of Bahia", 
          "id": "https://www.grid.ac/institutes/grid.8399.b", 
          "name": [
            "Instituto de F\u00edsica, Universidade Federal da Bahia, Campus Universit\u00e1rio de Ondina, 40.210-340, Salvador, Bahia, Brazil"
          ], 
          "type": "Organization"
        }, 
        "familyName": "David", 
        "givenName": "Denis", 
        "id": "sg:person.010321512405.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010321512405.53"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.jcis.2003.09.049", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002068452"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-03150-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005112114", 
          "https://doi.org/10.1007/978-3-662-03150-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-03150-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005112114", 
          "https://doi.org/10.1007/978-3-662-03150-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apsusc.2008.01.147", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005514852"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jcis.2002.8239", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006682923"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11249-008-9319-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010006697", 
          "https://doi.org/10.1007/s11249-008-9319-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1151-2916.2000.tb01527.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012346406"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.86.052503", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014278021"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.86.052503", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014278021"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.110.066103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015929933"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.110.066103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015929933"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0927-796x(02)00005-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022066153"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jnoncrysol.2005.10.040", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022168929"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.carbon.2012.02.041", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022763650"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0167-2738(94)00217-g", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023261770"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0375-9601(97)00658-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024221101"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0001-8686(80)80006-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024768274"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apsusc.2016.06.044", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028258139"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.elspec.2004.03.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029024536"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compscitech.2011.10.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030233828"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apsusc.2009.02.050", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030443137"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apsusc.2013.02.087", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031605712"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0022-3727/29/7/010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031758179"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00018736100101281", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032149120"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00339-005-3257-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040617760", 
          "https://doi.org/10.1007/s00339-005-3257-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0021-9797(88)90048-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041576673"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/b978-0-08-054721-3.50035-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042489258"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1151-2916.1998.tb02660.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046357221"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.70.195412", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046871547"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.70.195412", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046871547"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.diamond.2009.01.037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047778296"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcis.2009.11.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049877277"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/cr00088a006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053906954"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jcis.1997.4857", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054488877"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acs.langmuir.5b03054", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055116525"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ar50118a003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055151309"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp410199j", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056098062"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/la962131c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056168285"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/la962131c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056168285"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1350999", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057697658"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1941464", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057833319"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2709576", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057858315"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.333229", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057937792"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.357218", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057977066"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.368570", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058000713"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.371143", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058005548"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.113.1254", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060421246"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.113.1254", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060421246"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.17.4689", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060523895"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.17.4689", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060523895"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.30.4713", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060536183"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.30.4713", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060536183"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.56.1612", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060585901"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.56.1612", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060585901"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.61.10149", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060594899"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.61.10149", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060594899"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.71.235412", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060613936"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.71.235412", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060613936"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.71.235412", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060613936"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1209/epl/i2005-10520-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064237534"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1209/epl/i2005-10520-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064237534"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-12", 
    "datePublishedReg": "2017-12-01", 
    "description": "Hamaker interaction energies and cutoff distances have been calculated for disordered carbon films, in contact with purely dispersive (diiodomethane) or polar (water) liquids, using their experimental dielectric functions \u03b5 (q, \u03c9) obtained over a broad energy range. In contrast with previous works, a q-averaged <\u03b5 (q, \u03c9) > q is derived from photoelectron energy-loss spectroscopy (XPS-PEELS) where the energy loss function (ELF) < Im[\u22121/\u03b5 (q, \u03c9)] > q is a weighted average over allowed transferred wave vector values, q, given by the physics of bulk plasmon excitation. For microcrystalline diamond and amorphous carbon films with a wide range of (sp3/sp2 + sp3) hybridization, non-retarded Hamaker energies, A132 (L < 1 nm), were calculated in several configurations, and distance and wavenumber cutoff values were then calculated based on A132 and the dispersive work of adhesion obtained from contact angles. A geometric average approximation, H0 CVL = (H0 CVCH0 LVL)1/2, holds for the cutoff separation distances obtained for carbon-vacuum-liquid (CVL), carbon-vacuum-carbon (CVC) and liquid-vacuum-liquid (LVL) equilibrium configurations. The linear dependence found for ACVL, ACLC and ACLV values as a function of ACVC, for each liquid, allows predictive relationships for Hamaker energies (in any configuration) using experimental determination of the dispersive component of the surface tension, \u03b3CVd, and a guess value of the cutoff distance H0 CVC of the solid. Graphical Abstract Graphical Abstract", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s13538-017-0521-0", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1136035", 
        "issn": [
          "0103-9733", 
          "1678-4448"
        ], 
        "name": "Brazilian Journal of Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "47"
      }
    ], 
    "name": "Derivation of Hamaker Dispersion Energy of Amorphous Carbon Surfaces in Contact with Liquids Using Photoelectron Energy-Loss Spectra", 
    "pagination": "594-605", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "1d9ebfd53d111882cf58fc00d072fe647acdc27060ec08c354120f32a3c30f7f"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s13538-017-0521-0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1091381776"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s13538-017-0521-0", 
      "https://app.dimensions.ai/details/publication/pub.1091381776"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T16:04", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8664_00000601.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s13538-017-0521-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s13538-017-0521-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s13538-017-0521-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s13538-017-0521-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s13538-017-0521-0'


 

This table displays all metadata directly associated to this object as RDF triples.

218 TRIPLES      21 PREDICATES      75 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s13538-017-0521-0 schema:about anzsrc-for:02
2 anzsrc-for:0299
3 schema:author Nc749d69538b74d5782dfc26de33cb415
4 schema:citation sg:pub.10.1007/978-3-662-03150-6
5 sg:pub.10.1007/s00339-005-3257-6
6 sg:pub.10.1007/s11249-008-9319-0
7 https://doi.org/10.1006/jcis.1997.4857
8 https://doi.org/10.1006/jcis.2002.8239
9 https://doi.org/10.1016/0001-8686(80)80006-6
10 https://doi.org/10.1016/0021-9797(88)90048-3
11 https://doi.org/10.1016/0167-2738(94)00217-g
12 https://doi.org/10.1016/b978-0-08-054721-3.50035-6
13 https://doi.org/10.1016/j.apsusc.2008.01.147
14 https://doi.org/10.1016/j.apsusc.2009.02.050
15 https://doi.org/10.1016/j.apsusc.2013.02.087
16 https://doi.org/10.1016/j.apsusc.2016.06.044
17 https://doi.org/10.1016/j.carbon.2012.02.041
18 https://doi.org/10.1016/j.compscitech.2011.10.002
19 https://doi.org/10.1016/j.diamond.2009.01.037
20 https://doi.org/10.1016/j.elspec.2004.03.011
21 https://doi.org/10.1016/j.jcis.2003.09.049
22 https://doi.org/10.1016/j.jcis.2009.11.002
23 https://doi.org/10.1016/j.jnoncrysol.2005.10.040
24 https://doi.org/10.1016/s0375-9601(97)00658-0
25 https://doi.org/10.1016/s0927-796x(02)00005-0
26 https://doi.org/10.1021/acs.langmuir.5b03054
27 https://doi.org/10.1021/ar50118a003
28 https://doi.org/10.1021/cr00088a006
29 https://doi.org/10.1021/jp410199j
30 https://doi.org/10.1021/la962131c
31 https://doi.org/10.1063/1.1350999
32 https://doi.org/10.1063/1.1941464
33 https://doi.org/10.1063/1.2709576
34 https://doi.org/10.1063/1.333229
35 https://doi.org/10.1063/1.357218
36 https://doi.org/10.1063/1.368570
37 https://doi.org/10.1063/1.371143
38 https://doi.org/10.1080/00018736100101281
39 https://doi.org/10.1088/0022-3727/29/7/010
40 https://doi.org/10.1103/physrev.113.1254
41 https://doi.org/10.1103/physreva.86.052503
42 https://doi.org/10.1103/physrevb.17.4689
43 https://doi.org/10.1103/physrevb.30.4713
44 https://doi.org/10.1103/physrevb.56.1612
45 https://doi.org/10.1103/physrevb.61.10149
46 https://doi.org/10.1103/physrevb.70.195412
47 https://doi.org/10.1103/physrevb.71.235412
48 https://doi.org/10.1103/physrevlett.110.066103
49 https://doi.org/10.1111/j.1151-2916.1998.tb02660.x
50 https://doi.org/10.1111/j.1151-2916.2000.tb01527.x
51 https://doi.org/10.1209/epl/i2005-10520-5
52 schema:datePublished 2017-12
53 schema:datePublishedReg 2017-12-01
54 schema:description Hamaker interaction energies and cutoff distances have been calculated for disordered carbon films, in contact with purely dispersive (diiodomethane) or polar (water) liquids, using their experimental dielectric functions ε (q, ω) obtained over a broad energy range. In contrast with previous works, a q-averaged <ε (q, ω) > q is derived from photoelectron energy-loss spectroscopy (XPS-PEELS) where the energy loss function (ELF) < Im[−1/ε (q, ω)] > q is a weighted average over allowed transferred wave vector values, q, given by the physics of bulk plasmon excitation. For microcrystalline diamond and amorphous carbon films with a wide range of (sp3/sp2 + sp3) hybridization, non-retarded Hamaker energies, A132 (L < 1 nm), were calculated in several configurations, and distance and wavenumber cutoff values were then calculated based on A132 and the dispersive work of adhesion obtained from contact angles. A geometric average approximation, H0 CVL = (H0 CVCH0 LVL)1/2, holds for the cutoff separation distances obtained for carbon-vacuum-liquid (CVL), carbon-vacuum-carbon (CVC) and liquid-vacuum-liquid (LVL) equilibrium configurations. The linear dependence found for ACVL, ACLC and ACLV values as a function of ACVC, for each liquid, allows predictive relationships for Hamaker energies (in any configuration) using experimental determination of the dispersive component of the surface tension, γCVd, and a guess value of the cutoff distance H0 CVC of the solid. Graphical Abstract Graphical Abstract
55 schema:genre research_article
56 schema:inLanguage en
57 schema:isAccessibleForFree true
58 schema:isPartOf N14b585dcd7c242f49471980d7b9897a9
59 N4c680611ab6240da8e6226438e0eb70f
60 sg:journal.1136035
61 schema:name Derivation of Hamaker Dispersion Energy of Amorphous Carbon Surfaces in Contact with Liquids Using Photoelectron Energy-Loss Spectra
62 schema:pagination 594-605
63 schema:productId N2783c32e07ed41baab8da47d00cf0a6a
64 Nb1ff08937c87425faa0f3670e72a2d31
65 Nf8e38a33b82d4aaba4c48218a722631d
66 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091381776
67 https://doi.org/10.1007/s13538-017-0521-0
68 schema:sdDatePublished 2019-04-10T16:04
69 schema:sdLicense https://scigraph.springernature.com/explorer/license/
70 schema:sdPublisher Nd3f5ecaa25cd41dc9748b2bfa986a8d8
71 schema:url http://link.springer.com/10.1007/s13538-017-0521-0
72 sgo:license sg:explorer/license/
73 sgo:sdDataset articles
74 rdf:type schema:ScholarlyArticle
75 N14b585dcd7c242f49471980d7b9897a9 schema:issueNumber 6
76 rdf:type schema:PublicationIssue
77 N2783c32e07ed41baab8da47d00cf0a6a schema:name dimensions_id
78 schema:value pub.1091381776
79 rdf:type schema:PropertyValue
80 N40961fa596ba4350871807893518401d rdf:first sg:person.010321512405.53
81 rdf:rest rdf:nil
82 N4c680611ab6240da8e6226438e0eb70f schema:volumeNumber 47
83 rdf:type schema:PublicationVolume
84 Nb1ff08937c87425faa0f3670e72a2d31 schema:name readcube_id
85 schema:value 1d9ebfd53d111882cf58fc00d072fe647acdc27060ec08c354120f32a3c30f7f
86 rdf:type schema:PropertyValue
87 Nc749d69538b74d5782dfc26de33cb415 rdf:first sg:person.013314511321.06
88 rdf:rest N40961fa596ba4350871807893518401d
89 Nd3f5ecaa25cd41dc9748b2bfa986a8d8 schema:name Springer Nature - SN SciGraph project
90 rdf:type schema:Organization
91 Nf8e38a33b82d4aaba4c48218a722631d schema:name doi
92 schema:value 10.1007/s13538-017-0521-0
93 rdf:type schema:PropertyValue
94 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
95 schema:name Physical Sciences
96 rdf:type schema:DefinedTerm
97 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
98 schema:name Other Physical Sciences
99 rdf:type schema:DefinedTerm
100 sg:journal.1136035 schema:issn 0103-9733
101 1678-4448
102 schema:name Brazilian Journal of Physics
103 rdf:type schema:Periodical
104 sg:person.010321512405.53 schema:affiliation https://www.grid.ac/institutes/grid.8399.b
105 schema:familyName David
106 schema:givenName Denis
107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010321512405.53
108 rdf:type schema:Person
109 sg:person.013314511321.06 schema:affiliation https://www.grid.ac/institutes/grid.461893.1
110 schema:familyName Godet
111 schema:givenName Christian
112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013314511321.06
113 rdf:type schema:Person
114 sg:pub.10.1007/978-3-662-03150-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005112114
115 https://doi.org/10.1007/978-3-662-03150-6
116 rdf:type schema:CreativeWork
117 sg:pub.10.1007/s00339-005-3257-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040617760
118 https://doi.org/10.1007/s00339-005-3257-6
119 rdf:type schema:CreativeWork
120 sg:pub.10.1007/s11249-008-9319-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010006697
121 https://doi.org/10.1007/s11249-008-9319-0
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1006/jcis.1997.4857 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054488877
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1006/jcis.2002.8239 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006682923
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1016/0001-8686(80)80006-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024768274
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1016/0021-9797(88)90048-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041576673
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1016/0167-2738(94)00217-g schema:sameAs https://app.dimensions.ai/details/publication/pub.1023261770
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1016/b978-0-08-054721-3.50035-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042489258
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1016/j.apsusc.2008.01.147 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005514852
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1016/j.apsusc.2009.02.050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030443137
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1016/j.apsusc.2013.02.087 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031605712
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1016/j.apsusc.2016.06.044 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028258139
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1016/j.carbon.2012.02.041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022763650
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1016/j.compscitech.2011.10.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030233828
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1016/j.diamond.2009.01.037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047778296
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1016/j.elspec.2004.03.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029024536
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1016/j.jcis.2003.09.049 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002068452
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1016/j.jcis.2009.11.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049877277
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1016/j.jnoncrysol.2005.10.040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022168929
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1016/s0375-9601(97)00658-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024221101
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1016/s0927-796x(02)00005-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022066153
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1021/acs.langmuir.5b03054 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055116525
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1021/ar50118a003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055151309
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1021/cr00088a006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053906954
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1021/jp410199j schema:sameAs https://app.dimensions.ai/details/publication/pub.1056098062
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1021/la962131c schema:sameAs https://app.dimensions.ai/details/publication/pub.1056168285
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1063/1.1350999 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057697658
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1063/1.1941464 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057833319
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1063/1.2709576 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057858315
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1063/1.333229 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057937792
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1063/1.357218 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057977066
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1063/1.368570 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058000713
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1063/1.371143 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058005548
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1080/00018736100101281 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032149120
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1088/0022-3727/29/7/010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031758179
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1103/physrev.113.1254 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060421246
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1103/physreva.86.052503 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014278021
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1103/physrevb.17.4689 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060523895
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1103/physrevb.30.4713 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060536183
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1103/physrevb.56.1612 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060585901
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1103/physrevb.61.10149 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060594899
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1103/physrevb.70.195412 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046871547
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1103/physrevb.71.235412 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060613936
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1103/physrevlett.110.066103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015929933
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1111/j.1151-2916.1998.tb02660.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1046357221
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1111/j.1151-2916.2000.tb01527.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1012346406
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1209/epl/i2005-10520-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064237534
212 rdf:type schema:CreativeWork
213 https://www.grid.ac/institutes/grid.461893.1 schema:alternateName Institut de Physique de Rennes
214 schema:name Institut de Physique de Rennes (CNRS UMR 6251), Université Rennes 1, Campus Beaulieu - Bat. 11E - 35042, Rennes, France
215 rdf:type schema:Organization
216 https://www.grid.ac/institutes/grid.8399.b schema:alternateName Federal University of Bahia
217 schema:name Instituto de Física, Universidade Federal da Bahia, Campus Universitário de Ondina, 40.210-340, Salvador, Bahia, Brazil
218 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...