Au/CdSe hybrid nanoflowers: a high photocurrent generating photoelectrochemical cells View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-11-20

AUTHORS

Krishna Kanta Haldar, Rathindranath Biswas, Amitava Patra, Krishna Kamal Halder, Tapasi Sen

ABSTRACT

Photoelectrochemical cell composed of solution-processed nanoflower heterostructure of Au core and eight CdSe petals was investigated for enhanced photocurrent generation. The electrode of CdSe nanorods displayed photocurrent density of 2.1 mA/cm2 whereas the Au core CdSe nanoflower exhibited 4.6 mA/cm2 corresponding to a 119% increase during photoelectrochemical cell performance. Both electrodes showed prompt response to the on/off cycles of light, the photocurrent gain (IPhoton/Idark) in CdSe nanorods is 124.7, while the value is 223.3 for Au/CdSe nanoflower, calculated from the growth-decay curves. Photoresponse time was dramatically improved for Au/CdSe nanoflower samples due to increasing in 66% incident photon-to-current emission. Electron lifetime of 21.63 and 48.71 ns was observed for the electrode of CdSe nanorods and Au/CdSe nanoflowers respectively. The prolonged electron lifetime in the case of the electrode of Au/CdSe nanoflowers was responsible for improving charge separation and as a consequence, higher photocurrent generation. More... »

PAGES

1-7

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s13404-018-0247-y

DOI

http://dx.doi.org/10.1007/s13404-018-0247-y

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1110065515


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Chemical Sciences, Central University of Punjab, 151001, Bathinda, Punjab, India", 
          "id": "http://www.grid.ac/institutes/grid.428366.d", 
          "name": [
            "Department of Chemical Sciences, Central University of Punjab, 151001, Bathinda, Punjab, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Haldar", 
        "givenName": "Krishna Kanta", 
        "id": "sg:person.012657332514.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012657332514.50"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Chemical Sciences, Central University of Punjab, 151001, Bathinda, Punjab, India", 
          "id": "http://www.grid.ac/institutes/grid.428366.d", 
          "name": [
            "Department of Chemical Sciences, Central University of Punjab, 151001, Bathinda, Punjab, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Biswas", 
        "givenName": "Rathindranath", 
        "id": "sg:person.013454713114.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013454713114.36"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Materials Science, Indian Association for the Cultivation of Science, Jadavpur, 700032, Kolkata, India", 
          "id": "http://www.grid.ac/institutes/grid.417929.0", 
          "name": [
            "Department of Materials Science, Indian Association for the Cultivation of Science, Jadavpur, 700032, Kolkata, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Patra", 
        "givenName": "Amitava", 
        "id": "sg:person.01223667713.56", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01223667713.56"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Physics Department, Kirori Mal College, University of Delhi, 110007, Delhi, India", 
          "id": "http://www.grid.ac/institutes/grid.8195.5", 
          "name": [
            "Physics Department, Kirori Mal College, University of Delhi, 110007, Delhi, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Halder", 
        "givenName": "Krishna Kamal", 
        "id": "sg:person.014605252620.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014605252620.48"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Nano Science & Technology, 160062, Mohali, Punjab, India", 
          "id": "http://www.grid.ac/institutes/grid.454775.0", 
          "name": [
            "Institute of Nano Science & Technology, 160062, Mohali, Punjab, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sen", 
        "givenName": "Tapasi", 
        "id": "sg:person.01155554513.79", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01155554513.79"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s13404-017-0198-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084037137", 
          "https://doi.org/10.1007/s13404-017-0198-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12274-010-0076-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015407120", 
          "https://doi.org/10.1007/s12274-010-0076-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nchem.141", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032149572", 
          "https://doi.org/10.1038/nchem.141"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-11-20", 
    "datePublishedReg": "2018-11-20", 
    "description": "Photoelectrochemical cell composed of solution-processed nanoflower heterostructure of Au core and eight CdSe petals was investigated for enhanced photocurrent generation. The electrode of CdSe nanorods displayed photocurrent density of 2.1\u00a0mA/cm2 whereas the Au core CdSe nanoflower exhibited 4.6\u00a0mA/cm2 corresponding to a 119% increase during photoelectrochemical cell performance. Both electrodes showed prompt response to the on/off cycles of light, the photocurrent gain (IPhoton/Idark) in CdSe nanorods is 124.7, while the value is 223.3 for Au/CdSe nanoflower, calculated from the growth-decay curves. Photoresponse time was dramatically improved for Au/CdSe nanoflower samples due to increasing in 66% incident photon-to-current emission. Electron lifetime of 21.63 and 48.71\u00a0ns was observed for the electrode of CdSe nanorods and Au/CdSe nanoflowers respectively. The prolonged electron lifetime in the case of the electrode of Au/CdSe nanoflowers was responsible for improving charge separation and as a consequence, higher photocurrent generation.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s13404-018-0247-y", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1024852", 
        "issn": [
          "2364-821X", 
          "2190-7579"
        ], 
        "name": "Gold Bulletin", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "52"
      }
    ], 
    "keywords": [
      "photocurrent generation", 
      "CdSe nanorods", 
      "mA/cm2", 
      "photoelectrochemical cells", 
      "photocurrent gain", 
      "photoresponse time", 
      "electron lifetime", 
      "high photocurrent generation", 
      "Au core", 
      "enhanced photocurrent generation", 
      "nanorods", 
      "photocurrent density", 
      "nanoflowers", 
      "photoelectrochemical cell performance", 
      "cell performance", 
      "nanoflower sample", 
      "incident photon", 
      "lifetime", 
      "prolonged electron lifetime", 
      "charge separation", 
      "higher photocurrent", 
      "heterostructures", 
      "electrode", 
      "performance", 
      "cycles of light", 
      "gain", 
      "photocurrent", 
      "core", 
      "generation", 
      "cm2", 
      "photons", 
      "emission", 
      "ns", 
      "separation", 
      "cells", 
      "petals", 
      "density", 
      "prompt response", 
      "cycle", 
      "light", 
      "values", 
      "curves", 
      "time", 
      "samples", 
      "current emissions", 
      "increase", 
      "response", 
      "cases", 
      "consequences", 
      "solution-processed nanoflower heterostructure", 
      "nanoflower heterostructure", 
      "CdSe petals", 
      "Au core CdSe nanoflower", 
      "core CdSe nanoflower", 
      "CdSe nanoflower", 
      "Au/CdSe nanoflowers", 
      "growth-decay curves", 
      "Au/CdSe nanoflower samples", 
      "CdSe nanoflower samples"
    ], 
    "name": "Au/CdSe hybrid nanoflowers: a high photocurrent generating photoelectrochemical cells", 
    "pagination": "1-7", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1110065515"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s13404-018-0247-y"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s13404-018-0247-y", 
      "https://app.dimensions.ai/details/publication/pub.1110065515"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-11-01T18:34", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_773.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s13404-018-0247-y"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s13404-018-0247-y'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s13404-018-0247-y'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s13404-018-0247-y'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s13404-018-0247-y'


 

This table displays all metadata directly associated to this object as RDF triples.

166 TRIPLES      22 PREDICATES      87 URIs      76 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s13404-018-0247-y schema:about anzsrc-for:03
2 anzsrc-for:0306
3 schema:author N842ee3150e7f42699115ad4b9e67f5bd
4 schema:citation sg:pub.10.1007/s12274-010-0076-7
5 sg:pub.10.1007/s13404-017-0198-8
6 sg:pub.10.1038/nchem.141
7 schema:datePublished 2018-11-20
8 schema:datePublishedReg 2018-11-20
9 schema:description Photoelectrochemical cell composed of solution-processed nanoflower heterostructure of Au core and eight CdSe petals was investigated for enhanced photocurrent generation. The electrode of CdSe nanorods displayed photocurrent density of 2.1 mA/cm2 whereas the Au core CdSe nanoflower exhibited 4.6 mA/cm2 corresponding to a 119% increase during photoelectrochemical cell performance. Both electrodes showed prompt response to the on/off cycles of light, the photocurrent gain (IPhoton/Idark) in CdSe nanorods is 124.7, while the value is 223.3 for Au/CdSe nanoflower, calculated from the growth-decay curves. Photoresponse time was dramatically improved for Au/CdSe nanoflower samples due to increasing in 66% incident photon-to-current emission. Electron lifetime of 21.63 and 48.71 ns was observed for the electrode of CdSe nanorods and Au/CdSe nanoflowers respectively. The prolonged electron lifetime in the case of the electrode of Au/CdSe nanoflowers was responsible for improving charge separation and as a consequence, higher photocurrent generation.
10 schema:genre article
11 schema:inLanguage en
12 schema:isAccessibleForFree false
13 schema:isPartOf N2bf36688ccf045289b79af419aa5fdcc
14 N4397efbc12b04051a6bd98cbd8dfad35
15 sg:journal.1024852
16 schema:keywords Au core
17 Au core CdSe nanoflower
18 Au/CdSe nanoflower samples
19 Au/CdSe nanoflowers
20 CdSe nanoflower
21 CdSe nanoflower samples
22 CdSe nanorods
23 CdSe petals
24 cases
25 cell performance
26 cells
27 charge separation
28 cm2
29 consequences
30 core
31 core CdSe nanoflower
32 current emissions
33 curves
34 cycle
35 cycles of light
36 density
37 electrode
38 electron lifetime
39 emission
40 enhanced photocurrent generation
41 gain
42 generation
43 growth-decay curves
44 heterostructures
45 high photocurrent generation
46 higher photocurrent
47 incident photon
48 increase
49 lifetime
50 light
51 mA/cm2
52 nanoflower heterostructure
53 nanoflower sample
54 nanoflowers
55 nanorods
56 ns
57 performance
58 petals
59 photocurrent
60 photocurrent density
61 photocurrent gain
62 photocurrent generation
63 photoelectrochemical cell performance
64 photoelectrochemical cells
65 photons
66 photoresponse time
67 prolonged electron lifetime
68 prompt response
69 response
70 samples
71 separation
72 solution-processed nanoflower heterostructure
73 time
74 values
75 schema:name Au/CdSe hybrid nanoflowers: a high photocurrent generating photoelectrochemical cells
76 schema:pagination 1-7
77 schema:productId N05508d16215e463c9ff9119ce9554dfc
78 Nc40c27856c154aa08141190fb095b89e
79 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110065515
80 https://doi.org/10.1007/s13404-018-0247-y
81 schema:sdDatePublished 2021-11-01T18:34
82 schema:sdLicense https://scigraph.springernature.com/explorer/license/
83 schema:sdPublisher N5513237dd217414885561717826e7340
84 schema:url https://doi.org/10.1007/s13404-018-0247-y
85 sgo:license sg:explorer/license/
86 sgo:sdDataset articles
87 rdf:type schema:ScholarlyArticle
88 N05508d16215e463c9ff9119ce9554dfc schema:name doi
89 schema:value 10.1007/s13404-018-0247-y
90 rdf:type schema:PropertyValue
91 N2bf36688ccf045289b79af419aa5fdcc schema:volumeNumber 52
92 rdf:type schema:PublicationVolume
93 N4397efbc12b04051a6bd98cbd8dfad35 schema:issueNumber 1
94 rdf:type schema:PublicationIssue
95 N5513237dd217414885561717826e7340 schema:name Springer Nature - SN SciGraph project
96 rdf:type schema:Organization
97 N7b8aa312272e4f4a93407d3bd7d3edf2 rdf:first sg:person.01155554513.79
98 rdf:rest rdf:nil
99 N842ee3150e7f42699115ad4b9e67f5bd rdf:first sg:person.012657332514.50
100 rdf:rest N91b46298848f4a3c902aba2d6423ab3b
101 N91b46298848f4a3c902aba2d6423ab3b rdf:first sg:person.013454713114.36
102 rdf:rest Nb784314258ae48c584334c549272682b
103 Nb784314258ae48c584334c549272682b rdf:first sg:person.01223667713.56
104 rdf:rest Nc5a0ba8a7f4e4e01ab49d21c97010873
105 Nc40c27856c154aa08141190fb095b89e schema:name dimensions_id
106 schema:value pub.1110065515
107 rdf:type schema:PropertyValue
108 Nc5a0ba8a7f4e4e01ab49d21c97010873 rdf:first sg:person.014605252620.48
109 rdf:rest N7b8aa312272e4f4a93407d3bd7d3edf2
110 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
111 schema:name Chemical Sciences
112 rdf:type schema:DefinedTerm
113 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
114 schema:name Physical Chemistry (incl. Structural)
115 rdf:type schema:DefinedTerm
116 sg:journal.1024852 schema:issn 2190-7579
117 2364-821X
118 schema:name Gold Bulletin
119 schema:publisher Springer Nature
120 rdf:type schema:Periodical
121 sg:person.01155554513.79 schema:affiliation grid-institutes:grid.454775.0
122 schema:familyName Sen
123 schema:givenName Tapasi
124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01155554513.79
125 rdf:type schema:Person
126 sg:person.01223667713.56 schema:affiliation grid-institutes:grid.417929.0
127 schema:familyName Patra
128 schema:givenName Amitava
129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01223667713.56
130 rdf:type schema:Person
131 sg:person.012657332514.50 schema:affiliation grid-institutes:grid.428366.d
132 schema:familyName Haldar
133 schema:givenName Krishna Kanta
134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012657332514.50
135 rdf:type schema:Person
136 sg:person.013454713114.36 schema:affiliation grid-institutes:grid.428366.d
137 schema:familyName Biswas
138 schema:givenName Rathindranath
139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013454713114.36
140 rdf:type schema:Person
141 sg:person.014605252620.48 schema:affiliation grid-institutes:grid.8195.5
142 schema:familyName Halder
143 schema:givenName Krishna Kamal
144 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014605252620.48
145 rdf:type schema:Person
146 sg:pub.10.1007/s12274-010-0076-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015407120
147 https://doi.org/10.1007/s12274-010-0076-7
148 rdf:type schema:CreativeWork
149 sg:pub.10.1007/s13404-017-0198-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084037137
150 https://doi.org/10.1007/s13404-017-0198-8
151 rdf:type schema:CreativeWork
152 sg:pub.10.1038/nchem.141 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032149572
153 https://doi.org/10.1038/nchem.141
154 rdf:type schema:CreativeWork
155 grid-institutes:grid.417929.0 schema:alternateName Department of Materials Science, Indian Association for the Cultivation of Science, Jadavpur, 700032, Kolkata, India
156 schema:name Department of Materials Science, Indian Association for the Cultivation of Science, Jadavpur, 700032, Kolkata, India
157 rdf:type schema:Organization
158 grid-institutes:grid.428366.d schema:alternateName Department of Chemical Sciences, Central University of Punjab, 151001, Bathinda, Punjab, India
159 schema:name Department of Chemical Sciences, Central University of Punjab, 151001, Bathinda, Punjab, India
160 rdf:type schema:Organization
161 grid-institutes:grid.454775.0 schema:alternateName Institute of Nano Science & Technology, 160062, Mohali, Punjab, India
162 schema:name Institute of Nano Science & Technology, 160062, Mohali, Punjab, India
163 rdf:type schema:Organization
164 grid-institutes:grid.8195.5 schema:alternateName Physics Department, Kirori Mal College, University of Delhi, 110007, Delhi, India
165 schema:name Physics Department, Kirori Mal College, University of Delhi, 110007, Delhi, India
166 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...