Pyrolysed almond shells used as electrodes in microbial electrolysis cell View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2020-03-06

AUTHORS

Cristian Arenas, Ana Sotres, Raúl M. Alonso, Judith González-Arias, Antonio Morán, Xiomar Gómez

ABSTRACT

The large cost of components used in microbial electrolysis cell (MEC) reactors represents an important limitation that is delaying the commercial implementation of this technology. In this work, we explore the feasibility of using pyrolysed almond shells (PAS) as a material for producing low-cost anodes for use in MEC systems. This was done by comparing the microbial populations that developed on the surface of PAS bioanodes with those present on the carbon felt (CF) bioanodes traditionally used in MECs. Raw almond shells were pyrolysed at three different temperatures, obtaining the best conductive material at the highest temperature (1000 °C). The behaviour of this material was then verified using a single-chamber cell. Subsequently, the main test was carried out using two-chamber cells and the microbial populations extant on each of the bioanodes were analysed. High-throughput sequencing of the 16S rRNA gene for eubacterial populations was carried out in order to compare the microbial communities attached to each type of electrode. The microbial populations on each electrode were also quantified by real-time polymerase chain reaction (real-time PCR) to determine the amount of bacteria capable of growing on the electrodes’ surface. The results indicated that the newly developed PAS bioanodes possess a biofilm similar to those found on the surface of traditional CF electrodes. More... »

PAGES

1-9

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s13399-020-00664-7

DOI

http://dx.doi.org/10.1007/s13399-020-00664-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1125453017


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0605", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Microbiology", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Chemical and Environmental Bioprocess Engineering Group, Natural Resources Institute (IRENA), Universidad de Le\u00f3n, Av. de Portugal 41, 24009, Le\u00f3n, Spain", 
          "id": "http://www.grid.ac/institutes/grid.4807.b", 
          "name": [
            "Chemical and Environmental Bioprocess Engineering Group, Natural Resources Institute (IRENA), Universidad de Le\u00f3n, Av. de Portugal 41, 24009, Le\u00f3n, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Arenas", 
        "givenName": "Cristian", 
        "id": "sg:person.014376740051.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014376740051.83"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Chemical and Environmental Bioprocess Engineering Group, Natural Resources Institute (IRENA), Universidad de Le\u00f3n, Av. de Portugal 41, 24009, Le\u00f3n, Spain", 
          "id": "http://www.grid.ac/institutes/grid.4807.b", 
          "name": [
            "Chemical and Environmental Bioprocess Engineering Group, Natural Resources Institute (IRENA), Universidad de Le\u00f3n, Av. de Portugal 41, 24009, Le\u00f3n, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sotres", 
        "givenName": "Ana", 
        "id": "sg:person.01242730247.94", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01242730247.94"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Chemical and Environmental Bioprocess Engineering Group, Natural Resources Institute (IRENA), Universidad de Le\u00f3n, Av. de Portugal 41, 24009, Le\u00f3n, Spain", 
          "id": "http://www.grid.ac/institutes/grid.4807.b", 
          "name": [
            "Chemical and Environmental Bioprocess Engineering Group, Natural Resources Institute (IRENA), Universidad de Le\u00f3n, Av. de Portugal 41, 24009, Le\u00f3n, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Alonso", 
        "givenName": "Ra\u00fal M.", 
        "id": "sg:person.010203206327.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010203206327.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Chemical and Environmental Bioprocess Engineering Group, Natural Resources Institute (IRENA), Universidad de Le\u00f3n, Av. de Portugal 41, 24009, Le\u00f3n, Spain", 
          "id": "http://www.grid.ac/institutes/grid.4807.b", 
          "name": [
            "Chemical and Environmental Bioprocess Engineering Group, Natural Resources Institute (IRENA), Universidad de Le\u00f3n, Av. de Portugal 41, 24009, Le\u00f3n, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gonz\u00e1lez-Arias", 
        "givenName": "Judith", 
        "id": "sg:person.011156533437.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011156533437.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Chemical and Environmental Bioprocess Engineering Group, Natural Resources Institute (IRENA), Universidad de Le\u00f3n, Av. de Portugal 41, 24009, Le\u00f3n, Spain", 
          "id": "http://www.grid.ac/institutes/grid.4807.b", 
          "name": [
            "Chemical and Environmental Bioprocess Engineering Group, Natural Resources Institute (IRENA), Universidad de Le\u00f3n, Av. de Portugal 41, 24009, Le\u00f3n, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mor\u00e1n", 
        "givenName": "Antonio", 
        "id": "sg:person.01062704754.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01062704754.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Chemical and Environmental Bioprocess Engineering Group, Natural Resources Institute (IRENA), Universidad de Le\u00f3n, Av. de Portugal 41, 24009, Le\u00f3n, Spain", 
          "id": "http://www.grid.ac/institutes/grid.4807.b", 
          "name": [
            "Chemical and Environmental Bioprocess Engineering Group, Natural Resources Institute (IRENA), Universidad de Le\u00f3n, Av. de Portugal 41, 24009, Le\u00f3n, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "G\u00f3mez", 
        "givenName": "Xiomar", 
        "id": "sg:person.0741337635.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0741337635.31"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1134/s0003683819010101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1113174198", 
          "https://doi.org/10.1134/s0003683819010101"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11814-013-0228-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043797850", 
          "https://doi.org/10.1007/s11814-013-0228-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s13399-015-0171-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002510475", 
          "https://doi.org/10.1007/s13399-015-0171-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-66793-5_11", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093114749", 
          "https://doi.org/10.1007/978-3-319-66793-5_11"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11157-018-9459-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100679367", 
          "https://doi.org/10.1007/s11157-018-9459-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10008-016-3432-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053310715", 
          "https://doi.org/10.1007/s10008-016-3432-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s42452-019-0409-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1113263868", 
          "https://doi.org/10.1007/s42452-019-0409-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s13399-019-00424-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1114014033", 
          "https://doi.org/10.1007/s13399-019-00424-2"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2020-03-06", 
    "datePublishedReg": "2020-03-06", 
    "description": "The large cost of components used in microbial electrolysis cell (MEC) reactors represents an important limitation that is delaying the commercial implementation of this technology. In this work, we explore the feasibility of using pyrolysed almond shells (PAS) as a material for producing low-cost anodes for use in MEC systems. This was done by comparing the microbial populations that developed on the surface of PAS bioanodes with those present on the carbon felt (CF) bioanodes traditionally used in MECs. Raw almond shells were pyrolysed at three different temperatures, obtaining the best conductive material at the highest temperature (1000\u00a0\u00b0C). The behaviour of this material was then verified using a single-chamber cell. Subsequently, the main test was carried out using two-chamber cells and the microbial populations extant on each of the bioanodes were analysed. High-throughput sequencing of the 16S rRNA gene for eubacterial populations was carried out in order to compare the microbial communities attached to each type of electrode. The microbial populations on each electrode were also quantified by real-time polymerase chain reaction (real-time PCR) to determine the amount of bacteria capable of growing on the electrodes\u2019 surface. The results indicated that the newly developed PAS bioanodes possess a biofilm similar to those found on the surface of traditional CF electrodes.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s13399-020-00664-7", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1136841", 
        "issn": [
          "2190-6815", 
          "2190-6823"
        ], 
        "name": "Biomass Conversion and Biorefinery", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }
    ], 
    "keywords": [
      "microbial populations", 
      "high-throughput sequencing", 
      "low-cost anodes", 
      "surface of PAS", 
      "microbial communities", 
      "microbial electrolysis cell reactor", 
      "rRNA gene", 
      "microbial electrolysis cell", 
      "eubacterial population", 
      "single-chamber cell", 
      "CF electrode", 
      "almond shells", 
      "conductive materials", 
      "real-time polymerase chain reaction", 
      "MEC system", 
      "electrode", 
      "bioanode", 
      "commercial implementation", 
      "types of electrodes", 
      "electrolysis cell", 
      "cells", 
      "two-chamber cell", 
      "amount of bacteria", 
      "polymerase chain reaction", 
      "shell", 
      "cell reactor", 
      "genes", 
      "chain reaction", 
      "population", 
      "sequencing", 
      "bacteria", 
      "surface", 
      "biofilms", 
      "materials", 
      "anode", 
      "technology", 
      "different temperatures", 
      "high temperature", 
      "carbon", 
      "community", 
      "temperature", 
      "MEC", 
      "important limitations", 
      "components", 
      "implementation", 
      "cost", 
      "feasibility", 
      "large costs", 
      "limitations", 
      "work", 
      "types", 
      "reaction", 
      "system", 
      "amount", 
      "reactor", 
      "order", 
      "results", 
      "use", 
      "test", 
      "behavior", 
      "main test", 
      "pass", 
      "electrolysis cell (MEC) reactors", 
      "Raw almond shells", 
      "PAS bioanodes", 
      "traditional CF electrodes"
    ], 
    "name": "Pyrolysed almond shells used as electrodes in microbial electrolysis cell", 
    "pagination": "1-9", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1125453017"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s13399-020-00664-7"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s13399-020-00664-7", 
      "https://app.dimensions.ai/details/publication/pub.1125453017"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:56", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_851.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s13399-020-00664-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s13399-020-00664-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s13399-020-00664-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s13399-020-00664-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s13399-020-00664-7'


 

This table displays all metadata directly associated to this object as RDF triples.

185 TRIPLES      22 PREDICATES      97 URIs      81 LITERALS      4 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s13399-020-00664-7 schema:about anzsrc-for:06
2 anzsrc-for:0605
3 schema:author N486eca829a1f4b36997304bf56ea9f4f
4 schema:citation sg:pub.10.1007/978-3-319-66793-5_11
5 sg:pub.10.1007/s10008-016-3432-z
6 sg:pub.10.1007/s11157-018-9459-0
7 sg:pub.10.1007/s11814-013-0228-z
8 sg:pub.10.1007/s13399-015-0171-9
9 sg:pub.10.1007/s13399-019-00424-2
10 sg:pub.10.1007/s42452-019-0409-4
11 sg:pub.10.1134/s0003683819010101
12 schema:datePublished 2020-03-06
13 schema:datePublishedReg 2020-03-06
14 schema:description The large cost of components used in microbial electrolysis cell (MEC) reactors represents an important limitation that is delaying the commercial implementation of this technology. In this work, we explore the feasibility of using pyrolysed almond shells (PAS) as a material for producing low-cost anodes for use in MEC systems. This was done by comparing the microbial populations that developed on the surface of PAS bioanodes with those present on the carbon felt (CF) bioanodes traditionally used in MECs. Raw almond shells were pyrolysed at three different temperatures, obtaining the best conductive material at the highest temperature (1000 °C). The behaviour of this material was then verified using a single-chamber cell. Subsequently, the main test was carried out using two-chamber cells and the microbial populations extant on each of the bioanodes were analysed. High-throughput sequencing of the 16S rRNA gene for eubacterial populations was carried out in order to compare the microbial communities attached to each type of electrode. The microbial populations on each electrode were also quantified by real-time polymerase chain reaction (real-time PCR) to determine the amount of bacteria capable of growing on the electrodes’ surface. The results indicated that the newly developed PAS bioanodes possess a biofilm similar to those found on the surface of traditional CF electrodes.
15 schema:genre article
16 schema:inLanguage en
17 schema:isAccessibleForFree true
18 schema:isPartOf sg:journal.1136841
19 schema:keywords CF electrode
20 MEC
21 MEC system
22 PAS bioanodes
23 Raw almond shells
24 almond shells
25 amount
26 amount of bacteria
27 anode
28 bacteria
29 behavior
30 bioanode
31 biofilms
32 carbon
33 cell reactor
34 cells
35 chain reaction
36 commercial implementation
37 community
38 components
39 conductive materials
40 cost
41 different temperatures
42 electrode
43 electrolysis cell
44 electrolysis cell (MEC) reactors
45 eubacterial population
46 feasibility
47 genes
48 high temperature
49 high-throughput sequencing
50 implementation
51 important limitations
52 large costs
53 limitations
54 low-cost anodes
55 main test
56 materials
57 microbial communities
58 microbial electrolysis cell
59 microbial electrolysis cell reactor
60 microbial populations
61 order
62 pass
63 polymerase chain reaction
64 population
65 rRNA gene
66 reaction
67 reactor
68 real-time polymerase chain reaction
69 results
70 sequencing
71 shell
72 single-chamber cell
73 surface
74 surface of PAS
75 system
76 technology
77 temperature
78 test
79 traditional CF electrodes
80 two-chamber cell
81 types
82 types of electrodes
83 use
84 work
85 schema:name Pyrolysed almond shells used as electrodes in microbial electrolysis cell
86 schema:pagination 1-9
87 schema:productId N1838ac63b2af47a5bb1c43eb2ac81d8e
88 N879dce04aca44a2c931366cbf8653387
89 schema:sameAs https://app.dimensions.ai/details/publication/pub.1125453017
90 https://doi.org/10.1007/s13399-020-00664-7
91 schema:sdDatePublished 2022-01-01T18:56
92 schema:sdLicense https://scigraph.springernature.com/explorer/license/
93 schema:sdPublisher Nb3376c19bd32405e812e31f3d8ab72da
94 schema:url https://doi.org/10.1007/s13399-020-00664-7
95 sgo:license sg:explorer/license/
96 sgo:sdDataset articles
97 rdf:type schema:ScholarlyArticle
98 N148b262dcba44dd89e90c38421d77d4b rdf:first sg:person.011156533437.28
99 rdf:rest Na0a0a0497aab43d8959ec9a2fbd77ebf
100 N1838ac63b2af47a5bb1c43eb2ac81d8e schema:name dimensions_id
101 schema:value pub.1125453017
102 rdf:type schema:PropertyValue
103 N386749335db141679c947ed587204f40 rdf:first sg:person.01242730247.94
104 rdf:rest Naf090dbb952a40d68a670131c6644d05
105 N486eca829a1f4b36997304bf56ea9f4f rdf:first sg:person.014376740051.83
106 rdf:rest N386749335db141679c947ed587204f40
107 N879dce04aca44a2c931366cbf8653387 schema:name doi
108 schema:value 10.1007/s13399-020-00664-7
109 rdf:type schema:PropertyValue
110 N916628f39c114cdd83d00743eefaba03 rdf:first sg:person.0741337635.31
111 rdf:rest rdf:nil
112 Na0a0a0497aab43d8959ec9a2fbd77ebf rdf:first sg:person.01062704754.29
113 rdf:rest N916628f39c114cdd83d00743eefaba03
114 Naf090dbb952a40d68a670131c6644d05 rdf:first sg:person.010203206327.16
115 rdf:rest N148b262dcba44dd89e90c38421d77d4b
116 Nb3376c19bd32405e812e31f3d8ab72da schema:name Springer Nature - SN SciGraph project
117 rdf:type schema:Organization
118 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
119 schema:name Biological Sciences
120 rdf:type schema:DefinedTerm
121 anzsrc-for:0605 schema:inDefinedTermSet anzsrc-for:
122 schema:name Microbiology
123 rdf:type schema:DefinedTerm
124 sg:journal.1136841 schema:issn 2190-6815
125 2190-6823
126 schema:name Biomass Conversion and Biorefinery
127 schema:publisher Springer Nature
128 rdf:type schema:Periodical
129 sg:person.010203206327.16 schema:affiliation grid-institutes:grid.4807.b
130 schema:familyName Alonso
131 schema:givenName Raúl M.
132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010203206327.16
133 rdf:type schema:Person
134 sg:person.01062704754.29 schema:affiliation grid-institutes:grid.4807.b
135 schema:familyName Morán
136 schema:givenName Antonio
137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01062704754.29
138 rdf:type schema:Person
139 sg:person.011156533437.28 schema:affiliation grid-institutes:grid.4807.b
140 schema:familyName González-Arias
141 schema:givenName Judith
142 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011156533437.28
143 rdf:type schema:Person
144 sg:person.01242730247.94 schema:affiliation grid-institutes:grid.4807.b
145 schema:familyName Sotres
146 schema:givenName Ana
147 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01242730247.94
148 rdf:type schema:Person
149 sg:person.014376740051.83 schema:affiliation grid-institutes:grid.4807.b
150 schema:familyName Arenas
151 schema:givenName Cristian
152 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014376740051.83
153 rdf:type schema:Person
154 sg:person.0741337635.31 schema:affiliation grid-institutes:grid.4807.b
155 schema:familyName Gómez
156 schema:givenName Xiomar
157 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0741337635.31
158 rdf:type schema:Person
159 sg:pub.10.1007/978-3-319-66793-5_11 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093114749
160 https://doi.org/10.1007/978-3-319-66793-5_11
161 rdf:type schema:CreativeWork
162 sg:pub.10.1007/s10008-016-3432-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1053310715
163 https://doi.org/10.1007/s10008-016-3432-z
164 rdf:type schema:CreativeWork
165 sg:pub.10.1007/s11157-018-9459-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100679367
166 https://doi.org/10.1007/s11157-018-9459-0
167 rdf:type schema:CreativeWork
168 sg:pub.10.1007/s11814-013-0228-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1043797850
169 https://doi.org/10.1007/s11814-013-0228-z
170 rdf:type schema:CreativeWork
171 sg:pub.10.1007/s13399-015-0171-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002510475
172 https://doi.org/10.1007/s13399-015-0171-9
173 rdf:type schema:CreativeWork
174 sg:pub.10.1007/s13399-019-00424-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1114014033
175 https://doi.org/10.1007/s13399-019-00424-2
176 rdf:type schema:CreativeWork
177 sg:pub.10.1007/s42452-019-0409-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113263868
178 https://doi.org/10.1007/s42452-019-0409-4
179 rdf:type schema:CreativeWork
180 sg:pub.10.1134/s0003683819010101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113174198
181 https://doi.org/10.1134/s0003683819010101
182 rdf:type schema:CreativeWork
183 grid-institutes:grid.4807.b schema:alternateName Chemical and Environmental Bioprocess Engineering Group, Natural Resources Institute (IRENA), Universidad de León, Av. de Portugal 41, 24009, León, Spain
184 schema:name Chemical and Environmental Bioprocess Engineering Group, Natural Resources Institute (IRENA), Universidad de León, Av. de Portugal 41, 24009, León, Spain
185 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...