# Structural results on lifting, orthogonality and finiteness of idempotents

Ontology type: schema:ScholarlyArticle      Open Access: True

### Article Info

DATE

2021-12-27

AUTHORS ABSTRACT

In this paper, using the canonical correspondence between the idempotents and clopens, we obtain several new results on lifting idempotents. The Zariski clopens of the maximal spectrum are precisely determined, then as an application, lifting idempotents modulo the Jacobson radical is characterized. Lifting idempotents modulo an arbitrary ideal is also characterized in terms of certain connected sets related to that ideal. Then as an application, we obtain that the sum of a lifting ideal and a regular ideal is a lifting ideal. We prove that lifting idempotents preserves the orthogonality in countable cases. The lifting property of an arbitrary morphism of rings is characterized. As another major result, it is proved that the number of idempotents of a ring R is finite if and only if it is of the form 2κ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^{\kappa }$$\end{document} where κ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\kappa$$\end{document} is the cardinal of the connected components of Spec(R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text {Spec}}(R)$$\end{document}. Finally, it is proved that the primitive idempotents of a zero dimensional ring are in 1-1 correspondence with the isolated points of its prime spectrum. These results either generalize or improve several important results in the literature. More... »

PAGES

54

### References to SciGraph publications

• 1983-12. Lifting idempotents and Clifford theory in COMMENTARII MATHEMATICI HELVETICI
• 2021-01-02. Structural results on harmonic rings and lessened rings in BEITRÄGE ZUR ALGEBRA UND GEOMETRIE / CONTRIBUTIONS TO ALGEBRA AND GEOMETRY
• 2021-08-27. Structure theory of p.p. rings and their generalizations in REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS, FÍSICAS Y NATURALES. SERIE A. MATEMÁTICAS
• 2020-07-16. Characterizations of Gelfand Rings Specially Clean Rings and their Dual Rings in RESULTS IN MATHEMATICS
• 1988-09. Lifting idempotents in near-rings in ARCHIV DER MATHEMATIK
• 2021-09-30. Some Results on Pure Ideals and Trace Ideals of Projective Modules in ACTA MATHEMATICA VIETNAMICA
• 1978. General Lattice Theory in NONE
• 1992. Rings and Categories of Modules in NONE
• 1991. A First Course in Noncommutative Rings in NONE

### Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s13398-021-01199-w

DOI

http://dx.doi.org/10.1007/s13398-021-01199-w

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1144196478

Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service:

[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Biological Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Biochemistry and Cell Biology",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Department of Mathematics, Faculty of Basic Sciences, University of Maragheh, P. O. Box 55136-553, Maragheh, Iran",
"id": "http://www.grid.ac/institutes/grid.449862.5",
"name": [
"Department of Mathematics, Faculty of Basic Sciences, University of Maragheh, P. O. Box 55136-553, Maragheh, Iran"
],
"type": "Organization"
},
"givenName": "Abolfazl",
"id": "sg:person.016645446261.70",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016645446261.70"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "School of Mathematics, D.A.V.V., 452001, Indore, India",
"id": "http://www.grid.ac/institutes/None",
"name": [
"School of Mathematics, D.A.V.V., 452001, Indore, India"
],
"type": "Organization"
},
"familyName": "Sharma",
"givenName": "Pramod K.",
"id": "sg:person.011044110743.56",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011044110743.56"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/978-3-0348-7633-9",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1013230685",
"https://doi.org/10.1007/978-3-0348-7633-9"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00025-020-01252-x",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1129385732",
"https://doi.org/10.1007/s00025-020-01252-x"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf01207472",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1039732864",
"https://doi.org/10.1007/bf01207472"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s40306-021-00451-0",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1141519922",
"https://doi.org/10.1007/s40306-021-00451-0"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-1-4612-4418-9",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1018018311",
"https://doi.org/10.1007/978-1-4612-4418-9"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s13366-020-00556-x",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1134279922",
"https://doi.org/10.1007/s13366-020-00556-x"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-1-4684-0406-7",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1011993377",
"https://doi.org/10.1007/978-1-4684-0406-7"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s13398-021-01120-5",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1140703598",
"https://doi.org/10.1007/s13398-021-01120-5"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf02564626",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1005407613",
"https://doi.org/10.1007/bf02564626"
],
"type": "CreativeWork"
}
],
"datePublished": "2021-12-27",
"datePublishedReg": "2021-12-27",
"description": "In this paper, using the canonical correspondence between the idempotents and clopens, we obtain several new results on lifting idempotents. The Zariski clopens of the maximal spectrum are precisely determined, then as an application, lifting idempotents modulo the Jacobson radical is characterized. Lifting idempotents modulo an arbitrary ideal is also characterized in terms of certain connected sets related to that ideal. Then as an application, we obtain that the sum of a lifting ideal and a regular ideal is a lifting ideal. We prove that lifting idempotents preserves the orthogonality in countable cases. The lifting property of an arbitrary morphism of rings is characterized. As another major result, it is proved that the number of idempotents of a ring R is finite if and only if it is of the form 2\u03ba\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$2^{\\kappa }$$\\end{document} where \u03ba\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\kappa$$\\end{document} is the cardinal of the connected components of Spec(R)\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$${\\text {Spec}}(R)$$\\end{document}. Finally, it is proved that the primitive idempotents of a zero dimensional ring are in 1-1 correspondence with the isolated points of its prime spectrum. These results either generalize or improve several important results in the literature.",
"genre": "article",
"id": "sg:pub.10.1007/s13398-021-01199-w",
"inLanguage": "en",
"isAccessibleForFree": true,
"isPartOf": [
{
"id": "sg:journal.1136515",
"issn": [
"1578-7303",
"1579-1505"
],
"name": "Revista de la Real Academia de Ciencias Exactas, F\u00edsicas y Naturales. Serie A. Matem\u00e1ticas",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "1",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
}
],
"keywords": [
"applications",
"results",
"orthogonality",
"important results",
"properties",
"new results",
"spectra",
"major results",
"lifting",
"terms",
"components",
"point",
"structural results",
"correspondence",
"set",
"ring",
"sum",
"cases",
"number",
"form",
"connected set",
"literature",
"connected components",
"finiteness",
"ideal",
"canonical correspondence",
"maximal spectrum",
"Jacobson",
"arbitrary ideal",
"paper",
"idempotents",
"regular ideal",
"morphisms",
"ring R",
"cardinals",
"clopen",
"countable case",
"arbitrary morphisms",
"number of idempotents",
"primitive idempotents",
"dimensional ring",
"prime spectrum"
],
"name": "Structural results on lifting, orthogonality and finiteness of idempotents",
"pagination": "54",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1144196478"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s13398-021-01199-w"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s13398-021-01199-w",
"https://app.dimensions.ai/details/publication/pub.1144196478"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-20T07:39",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_903.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/s13398-021-01199-w"
}
]

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s13398-021-01199-w'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s13398-021-01199-w'

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s13398-021-01199-w'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s13398-021-01199-w'

This table displays all metadata directly associated to this object as RDF triples.

146 TRIPLES      22 PREDICATES      76 URIs      59 LITERALS      6 BLANK NODES

Subject Predicate Object
2 anzsrc-for:0601
3 schema:author N44d1f0650ded4f49b3af242ca97bec13
4 schema:citation sg:pub.10.1007/978-1-4612-4418-9
5 sg:pub.10.1007/978-1-4684-0406-7
6 sg:pub.10.1007/978-3-0348-7633-9
7 sg:pub.10.1007/bf01207472
8 sg:pub.10.1007/bf02564626
9 sg:pub.10.1007/s00025-020-01252-x
10 sg:pub.10.1007/s13366-020-00556-x
11 sg:pub.10.1007/s13398-021-01120-5
12 sg:pub.10.1007/s40306-021-00451-0
13 schema:datePublished 2021-12-27
14 schema:datePublishedReg 2021-12-27
15 schema:description In this paper, using the canonical correspondence between the idempotents and clopens, we obtain several new results on lifting idempotents. The Zariski clopens of the maximal spectrum are precisely determined, then as an application, lifting idempotents modulo the Jacobson radical is characterized. Lifting idempotents modulo an arbitrary ideal is also characterized in terms of certain connected sets related to that ideal. Then as an application, we obtain that the sum of a lifting ideal and a regular ideal is a lifting ideal. We prove that lifting idempotents preserves the orthogonality in countable cases. The lifting property of an arbitrary morphism of rings is characterized. As another major result, it is proved that the number of idempotents of a ring R is finite if and only if it is of the form 2κ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^{\kappa }$$\end{document} where κ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\kappa$$\end{document} is the cardinal of the connected components of Spec(R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text {Spec}}(R)$$\end{document}. Finally, it is proved that the primitive idempotents of a zero dimensional ring are in 1-1 correspondence with the isolated points of its prime spectrum. These results either generalize or improve several important results in the literature.
16 schema:genre article
17 schema:inLanguage en
18 schema:isAccessibleForFree true
19 schema:isPartOf N1f5068785d6f4b8ab501d6baeed09f3d
20 N59194d32a6fe40ca914c84ab7d707fe1
21 sg:journal.1136515
22 schema:keywords Jacobson
23 applications
24 arbitrary ideal
25 arbitrary morphisms
26 canonical correspondence
27 cardinals
28 cases
29 clopen
30 components
31 connected components
32 connected set
33 correspondence
34 countable case
35 dimensional ring
36 finiteness
37 form
38 ideal
39 idempotents
40 important results
41 lifting
42 literature
43 major results
44 maximal spectrum
45 morphisms
46 new results
47 number
48 number of idempotents
49 orthogonality
50 paper
51 point
52 prime spectrum
53 primitive idempotents
54 properties
55 regular ideal
56 results
57 ring
58 ring R
59 set
60 spectra
61 structural results
62 sum
63 terms
64 schema:name Structural results on lifting, orthogonality and finiteness of idempotents
65 schema:pagination 54
66 schema:productId Na4f2bbd8bdfa4480939743f510df9066
67 Nb457419eaafd4b619b787327415bb68b
68 schema:sameAs https://app.dimensions.ai/details/publication/pub.1144196478
69 https://doi.org/10.1007/s13398-021-01199-w
70 schema:sdDatePublished 2022-05-20T07:39
72 schema:sdPublisher Ne52774f9d6f24bbcb92b4c7c6b097081
73 schema:url https://doi.org/10.1007/s13398-021-01199-w
75 sgo:sdDataset articles
76 rdf:type schema:ScholarlyArticle
78 rdf:type schema:PublicationVolume
79 N44d1f0650ded4f49b3af242ca97bec13 rdf:first sg:person.016645446261.70
80 rdf:rest N664d7253bb734046ba7f8bc05961ceda
81 N59194d32a6fe40ca914c84ab7d707fe1 schema:issueNumber 1
82 rdf:type schema:PublicationIssue
83 N664d7253bb734046ba7f8bc05961ceda rdf:first sg:person.011044110743.56
84 rdf:rest rdf:nil
85 Na4f2bbd8bdfa4480939743f510df9066 schema:name doi
86 schema:value 10.1007/s13398-021-01199-w
87 rdf:type schema:PropertyValue
88 Nb457419eaafd4b619b787327415bb68b schema:name dimensions_id
89 schema:value pub.1144196478
90 rdf:type schema:PropertyValue
91 Ne52774f9d6f24bbcb92b4c7c6b097081 schema:name Springer Nature - SN SciGraph project
92 rdf:type schema:Organization
93 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
94 schema:name Biological Sciences
95 rdf:type schema:DefinedTerm
96 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
97 schema:name Biochemistry and Cell Biology
98 rdf:type schema:DefinedTerm
99 sg:journal.1136515 schema:issn 1578-7303
100 1579-1505
101 schema:name Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas
102 schema:publisher Springer Nature
103 rdf:type schema:Periodical
104 sg:person.011044110743.56 schema:affiliation grid-institutes:None
105 schema:familyName Sharma
106 schema:givenName Pramod K.
107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011044110743.56
108 rdf:type schema:Person
109 sg:person.016645446261.70 schema:affiliation grid-institutes:grid.449862.5
111 schema:givenName Abolfazl
112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016645446261.70
113 rdf:type schema:Person
114 sg:pub.10.1007/978-1-4612-4418-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018018311
115 https://doi.org/10.1007/978-1-4612-4418-9
116 rdf:type schema:CreativeWork
117 sg:pub.10.1007/978-1-4684-0406-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011993377
118 https://doi.org/10.1007/978-1-4684-0406-7
119 rdf:type schema:CreativeWork
120 sg:pub.10.1007/978-3-0348-7633-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013230685
121 https://doi.org/10.1007/978-3-0348-7633-9
122 rdf:type schema:CreativeWork
123 sg:pub.10.1007/bf01207472 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039732864
124 https://doi.org/10.1007/bf01207472
125 rdf:type schema:CreativeWork
126 sg:pub.10.1007/bf02564626 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005407613
127 https://doi.org/10.1007/bf02564626
128 rdf:type schema:CreativeWork
129 sg:pub.10.1007/s00025-020-01252-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1129385732
130 https://doi.org/10.1007/s00025-020-01252-x
131 rdf:type schema:CreativeWork
132 sg:pub.10.1007/s13366-020-00556-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1134279922
133 https://doi.org/10.1007/s13366-020-00556-x
134 rdf:type schema:CreativeWork
135 sg:pub.10.1007/s13398-021-01120-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1140703598
136 https://doi.org/10.1007/s13398-021-01120-5
137 rdf:type schema:CreativeWork
138 sg:pub.10.1007/s40306-021-00451-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1141519922
139 https://doi.org/10.1007/s40306-021-00451-0
140 rdf:type schema:CreativeWork
141 grid-institutes:None schema:alternateName School of Mathematics, D.A.V.V., 452001, Indore, India
142 schema:name School of Mathematics, D.A.V.V., 452001, Indore, India
143 rdf:type schema:Organization
144 grid-institutes:grid.449862.5 schema:alternateName Department of Mathematics, Faculty of Basic Sciences, University of Maragheh, P. O. Box 55136-553, Maragheh, Iran
145 schema:name Department of Mathematics, Faculty of Basic Sciences, University of Maragheh, P. O. Box 55136-553, Maragheh, Iran
146 rdf:type schema:Organization