Singular 3-manifolds in R5 View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2021-12-27

AUTHORS

Pedro Benedini Riul, Maria Aparecida Soares Ruas, Andrea de Jesus Sacramento

ABSTRACT

We study 3-manifolds in R5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^5$$\end{document} with corank 1 singularities. At the singular point we define the curvature locus using the first and second fundamental forms, which contains all the local second order geometrical information about the manifold. Also, we relate the geometry of these objects to the geometry of regular 3-manifolds in R6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^6$$\end{document}. More... »

PAGES

56

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s13398-021-01198-x

DOI

http://dx.doi.org/10.1007/s13398-021-01198-x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1144208223


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Departamento de Matem\u00e1tica, Universidade Federal de S\u00e3o Carlos, Caixa Postal 676, 13560-905, S\u00e3o Carlos, SP, Brazil", 
          "id": "http://www.grid.ac/institutes/grid.411247.5", 
          "name": [
            "Departamento de Matem\u00e1tica, Universidade Federal de S\u00e3o Carlos, Caixa Postal 676, 13560-905, S\u00e3o Carlos, SP, Brazil"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Riul", 
        "givenName": "Pedro Benedini", 
        "id": "sg:person.013042570463.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013042570463.32"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Instituto de Ci\u00eancias Matem\u00e1ticas e de Computa\u00e7\u00e3o - USP, Av. Trabalhador S\u00e3o-carlense, 400 - Centro, 13566-590, S\u00e3o Carlos, SP, Brazil", 
          "id": "http://www.grid.ac/institutes/grid.11899.38", 
          "name": [
            "Instituto de Ci\u00eancias Matem\u00e1ticas e de Computa\u00e7\u00e3o - USP, Av. Trabalhador S\u00e3o-carlense, 400 - Centro, 13566-590, S\u00e3o Carlos, SP, Brazil"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ruas", 
        "givenName": "Maria Aparecida Soares", 
        "id": "sg:person.01240252537.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01240252537.24"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Instituto de Ci\u00eancias Matem\u00e1ticas e de Computa\u00e7\u00e3o - USP, Av. Trabalhador S\u00e3o-carlense, 400 - Centro, 13566-590, S\u00e3o Carlos, SP, Brazil", 
          "id": "http://www.grid.ac/institutes/grid.11899.38", 
          "name": [
            "Instituto de Ci\u00eancias Matem\u00e1ticas e de Computa\u00e7\u00e3o - USP, Av. Trabalhador S\u00e3o-carlense, 400 - Centro, 13566-590, S\u00e3o Carlos, SP, Brazil"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sacramento", 
        "givenName": "Andrea de Jesus", 
        "id": "sg:person.07627610231.84", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07627610231.84"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf01265348", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044019754", 
          "https://doi.org/10.1007/bf01265348"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02411172", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040796219", 
          "https://doi.org/10.1007/bf02411172"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01561096", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025379595", 
          "https://doi.org/10.1007/bf01561096"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02684889", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036589425", 
          "https://doi.org/10.1007/bf02684889"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2021-12-27", 
    "datePublishedReg": "2021-12-27", 
    "description": "We study 3-manifolds in R5\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$${\\mathbb {R}}^5$$\\end{document} with corank 1 singularities. At the singular point we define the curvature locus using the first and second fundamental forms, which contains all the local second order geometrical information about the manifold. Also, we relate the geometry  of these objects to the geometry of regular 3-manifolds in R6\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$${\\mathbb {R}}^6$$\\end{document}.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s13398-021-01198-x", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.9072969", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.9068627", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1136515", 
        "issn": [
          "1578-7303", 
          "1579-1505"
        ], 
        "name": "Revista de la Real Academia de Ciencias Exactas, F\u00edsicas y Naturales. Serie A. Matem\u00e1ticas", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "116"
      }
    ], 
    "keywords": [
      "corank 1 singularities", 
      "second fundamental form", 
      "singular points", 
      "fundamental form", 
      "geometrical information", 
      "geometry", 
      "manifold", 
      "singularity", 
      "objects", 
      "point", 
      "form", 
      "information", 
      "loci", 
      "R5"
    ], 
    "name": "Singular 3-manifolds in R5", 
    "pagination": "56", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1144208223"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s13398-021-01198-x"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s13398-021-01198-x", 
      "https://app.dimensions.ai/details/publication/pub.1144208223"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-20T07:38", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_884.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s13398-021-01198-x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s13398-021-01198-x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s13398-021-01198-x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s13398-021-01198-x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s13398-021-01198-x'


 

This table displays all metadata directly associated to this object as RDF triples.

109 TRIPLES      22 PREDICATES      43 URIs      31 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s13398-021-01198-x schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N4ef902d589b74e46afd954a5fe8d8f6f
4 schema:citation sg:pub.10.1007/bf01265348
5 sg:pub.10.1007/bf01561096
6 sg:pub.10.1007/bf02411172
7 sg:pub.10.1007/bf02684889
8 schema:datePublished 2021-12-27
9 schema:datePublishedReg 2021-12-27
10 schema:description We study 3-manifolds in R5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^5$$\end{document} with corank 1 singularities. At the singular point we define the curvature locus using the first and second fundamental forms, which contains all the local second order geometrical information about the manifold. Also, we relate the geometry of these objects to the geometry of regular 3-manifolds in R6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^6$$\end{document}.
11 schema:genre article
12 schema:inLanguage en
13 schema:isAccessibleForFree true
14 schema:isPartOf N10ed6af90ffa4f12975c1cf8036bd28e
15 N9a0d4d295e3c4cb8a8a3b885557c10a2
16 sg:journal.1136515
17 schema:keywords R5
18 corank 1 singularities
19 form
20 fundamental form
21 geometrical information
22 geometry
23 information
24 loci
25 manifold
26 objects
27 point
28 second fundamental form
29 singular points
30 singularity
31 schema:name Singular 3-manifolds in R5
32 schema:pagination 56
33 schema:productId N94c164ec35134ad1aef32dba89bff9df
34 Nb431cadd74364c5fbd045975909be655
35 schema:sameAs https://app.dimensions.ai/details/publication/pub.1144208223
36 https://doi.org/10.1007/s13398-021-01198-x
37 schema:sdDatePublished 2022-05-20T07:38
38 schema:sdLicense https://scigraph.springernature.com/explorer/license/
39 schema:sdPublisher N31d9717c20a94150b265f9da211ae1e4
40 schema:url https://doi.org/10.1007/s13398-021-01198-x
41 sgo:license sg:explorer/license/
42 sgo:sdDataset articles
43 rdf:type schema:ScholarlyArticle
44 N10ed6af90ffa4f12975c1cf8036bd28e schema:issueNumber 1
45 rdf:type schema:PublicationIssue
46 N31d9717c20a94150b265f9da211ae1e4 schema:name Springer Nature - SN SciGraph project
47 rdf:type schema:Organization
48 N4ef902d589b74e46afd954a5fe8d8f6f rdf:first sg:person.013042570463.32
49 rdf:rest N645caa8ee5cc4d248ec631ea176e7388
50 N645caa8ee5cc4d248ec631ea176e7388 rdf:first sg:person.01240252537.24
51 rdf:rest N9bbeb248221f44c4b5886b828f146ccc
52 N94c164ec35134ad1aef32dba89bff9df schema:name dimensions_id
53 schema:value pub.1144208223
54 rdf:type schema:PropertyValue
55 N9a0d4d295e3c4cb8a8a3b885557c10a2 schema:volumeNumber 116
56 rdf:type schema:PublicationVolume
57 N9bbeb248221f44c4b5886b828f146ccc rdf:first sg:person.07627610231.84
58 rdf:rest rdf:nil
59 Nb431cadd74364c5fbd045975909be655 schema:name doi
60 schema:value 10.1007/s13398-021-01198-x
61 rdf:type schema:PropertyValue
62 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
63 schema:name Mathematical Sciences
64 rdf:type schema:DefinedTerm
65 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
66 schema:name Pure Mathematics
67 rdf:type schema:DefinedTerm
68 sg:grant.9068627 http://pending.schema.org/fundedItem sg:pub.10.1007/s13398-021-01198-x
69 rdf:type schema:MonetaryGrant
70 sg:grant.9072969 http://pending.schema.org/fundedItem sg:pub.10.1007/s13398-021-01198-x
71 rdf:type schema:MonetaryGrant
72 sg:journal.1136515 schema:issn 1578-7303
73 1579-1505
74 schema:name Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas
75 schema:publisher Springer Nature
76 rdf:type schema:Periodical
77 sg:person.01240252537.24 schema:affiliation grid-institutes:grid.11899.38
78 schema:familyName Ruas
79 schema:givenName Maria Aparecida Soares
80 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01240252537.24
81 rdf:type schema:Person
82 sg:person.013042570463.32 schema:affiliation grid-institutes:grid.411247.5
83 schema:familyName Riul
84 schema:givenName Pedro Benedini
85 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013042570463.32
86 rdf:type schema:Person
87 sg:person.07627610231.84 schema:affiliation grid-institutes:grid.11899.38
88 schema:familyName Sacramento
89 schema:givenName Andrea de Jesus
90 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07627610231.84
91 rdf:type schema:Person
92 sg:pub.10.1007/bf01265348 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044019754
93 https://doi.org/10.1007/bf01265348
94 rdf:type schema:CreativeWork
95 sg:pub.10.1007/bf01561096 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025379595
96 https://doi.org/10.1007/bf01561096
97 rdf:type schema:CreativeWork
98 sg:pub.10.1007/bf02411172 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040796219
99 https://doi.org/10.1007/bf02411172
100 rdf:type schema:CreativeWork
101 sg:pub.10.1007/bf02684889 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036589425
102 https://doi.org/10.1007/bf02684889
103 rdf:type schema:CreativeWork
104 grid-institutes:grid.11899.38 schema:alternateName Instituto de Ciências Matemáticas e de Computação - USP, Av. Trabalhador São-carlense, 400 - Centro, 13566-590, São Carlos, SP, Brazil
105 schema:name Instituto de Ciências Matemáticas e de Computação - USP, Av. Trabalhador São-carlense, 400 - Centro, 13566-590, São Carlos, SP, Brazil
106 rdf:type schema:Organization
107 grid-institutes:grid.411247.5 schema:alternateName Departamento de Matemática, Universidade Federal de São Carlos, Caixa Postal 676, 13560-905, São Carlos, SP, Brazil
108 schema:name Departamento de Matemática, Universidade Federal de São Carlos, Caixa Postal 676, 13560-905, São Carlos, SP, Brazil
109 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...