Gaussian integral means in the Fock space View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2021-12-17

AUTHORS

Boban Karapetrović, Javad Mashreghi

ABSTRACT

We explore the relation between Hadamard products of two entire functions in the weighted Fock space Fγp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm {F}^p_\gamma $$\end{document} and their integral Gaussian means. By introducing the key auxiliary function κγ,r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\kappa _{\gamma ,r}$$\end{document}, we show that the growth of the Gaussian means of the Hadamard product f∗g∗κγ,r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f*g*\kappa _{\gamma ,r}$$\end{document} is controlled by the growth of Gaussian means of f and g. Among several consequences of this observation, in particular, we establish the sub-multiplicative property f∗g∗κF1≤‖f‖F1‖g‖F1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left\| f*g*\kappa \right\| _{\mathrm {F}^1}\le \Vert f\Vert _{\mathrm {F}^1}\Vert g\Vert _{\mathrm {F}^1}$$\end{document} for functions in the classical Fock space F1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm {F}^1$$\end{document}. More... »

PAGES

51

References to SciGraph publications

  • 1932-12. Some properties of fractional integrals. II in MATHEMATISCHE ZEITSCHRIFT
  • 1899. Théorème sur les séries entières in ACTA MATHEMATICA
  • 2013-11-07. Gaussian Integral Means of Entire Functions in COMPLEX ANALYSIS AND OPERATOR THEORY
  • 2019-12-06. Differentiable families of traceless matrix triples in REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS, FÍSICAS Y NATURALES. SERIE A. MATEMÁTICAS
  • 2012. Analysis on Fock Spaces in NONE
  • 2020-02-17. Resolvent growth condition for composition operators on the Fock space in ANNALS OF FUNCTIONAL ANALYSIS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s13398-021-01196-z

    DOI

    http://dx.doi.org/10.1007/s13398-021-01196-z

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1143969325


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0201", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Astronomical and Space Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Faculty of Mathematics, University of Belgrade, Studentski trg 16, Belgrade, Serbia", 
              "id": "http://www.grid.ac/institutes/grid.7149.b", 
              "name": [
                "Faculty of Mathematics, University of Belgrade, Studentski trg 16, Belgrade, Serbia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Karapetrovi\u0107", 
            "givenName": "Boban", 
            "id": "sg:person.012172146453.45", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012172146453.45"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "D\u00e9partement de Math\u00e9matiques et de Statistique, Universit\u00e9 Laval, G1K 0A6, Quebec, QC, Canada", 
              "id": "http://www.grid.ac/institutes/grid.23856.3a", 
              "name": [
                "D\u00e9partement de Math\u00e9matiques et de Statistique, Universit\u00e9 Laval, G1K 0A6, Quebec, QC, Canada"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Mashreghi", 
            "givenName": "Javad", 
            "id": "sg:person.012272126221.11", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012272126221.11"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/978-1-4419-8801-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027231096", 
              "https://doi.org/10.1007/978-1-4419-8801-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11785-013-0339-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003402822", 
              "https://doi.org/10.1007/s11785-013-0339-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02417870", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041053473", 
              "https://doi.org/10.1007/bf02417870"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s13398-019-00754-w", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1123185706", 
              "https://doi.org/10.1007/s13398-019-00754-w"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01180596", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040183690", 
              "https://doi.org/10.1007/bf01180596"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s43034-020-00059-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1124934473", 
              "https://doi.org/10.1007/s43034-020-00059-9"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2021-12-17", 
        "datePublishedReg": "2021-12-17", 
        "description": "We explore the relation between Hadamard products of two entire functions in the weighted Fock space F\u03b3p\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\mathrm {F}^p_\\gamma $$\\end{document} and their integral Gaussian means. By introducing the key auxiliary function \u03ba\u03b3,r\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\kappa _{\\gamma ,r}$$\\end{document}, we show that the growth of the Gaussian means of the Hadamard product f\u2217g\u2217\u03ba\u03b3,r\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$f*g*\\kappa _{\\gamma ,r}$$\\end{document} is controlled by the growth of Gaussian means of f and g. Among several consequences of this observation, in particular, we establish the sub-multiplicative property f\u2217g\u2217\u03baF1\u2264\u2016f\u2016F1\u2016g\u2016F1\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\left\\| f*g*\\kappa \\right\\| _{\\mathrm {F}^1}\\le \\Vert f\\Vert _{\\mathrm {F}^1}\\Vert g\\Vert _{\\mathrm {F}^1}$$\\end{document} for functions in the classical Fock space F1\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\mathrm {F}^1$$\\end{document}.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s13398-021-01196-z", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136515", 
            "issn": [
              "1578-7303", 
              "1579-1505"
            ], 
            "name": "Revista de la Real Academia de Ciencias Exactas, F\u00edsicas y Naturales. Serie A. Matem\u00e1ticas", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "116"
          }
        ], 
        "keywords": [
          "Fock space", 
          "Gaussian means", 
          "Hadamard product", 
          "classical Fock space", 
          "entire functions", 
          "weighted Fock spaces", 
          "integral means", 
          "space", 
          "function", 
          "means", 
          "properties", 
          "observations", 
          "relation", 
          "\u03ba\u03b3", 
          "consequences", 
          "products", 
          "growth"
        ], 
        "name": "Gaussian integral means in the Fock space", 
        "pagination": "51", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1143969325"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s13398-021-01196-z"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s13398-021-01196-z", 
          "https://app.dimensions.ai/details/publication/pub.1143969325"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-05-20T07:37", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_878.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s13398-021-01196-z"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s13398-021-01196-z'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s13398-021-01196-z'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s13398-021-01196-z'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s13398-021-01196-z'


     

    This table displays all metadata directly associated to this object as RDF triples.

    109 TRIPLES      22 PREDICATES      48 URIs      34 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s13398-021-01196-z schema:about anzsrc-for:02
    2 anzsrc-for:0201
    3 schema:author N2363a8eb3b9142e898fc0cfbe7ddefa8
    4 schema:citation sg:pub.10.1007/978-1-4419-8801-0
    5 sg:pub.10.1007/bf01180596
    6 sg:pub.10.1007/bf02417870
    7 sg:pub.10.1007/s11785-013-0339-x
    8 sg:pub.10.1007/s13398-019-00754-w
    9 sg:pub.10.1007/s43034-020-00059-9
    10 schema:datePublished 2021-12-17
    11 schema:datePublishedReg 2021-12-17
    12 schema:description We explore the relation between Hadamard products of two entire functions in the weighted Fock space Fγp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm {F}^p_\gamma $$\end{document} and their integral Gaussian means. By introducing the key auxiliary function κγ,r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\kappa _{\gamma ,r}$$\end{document}, we show that the growth of the Gaussian means of the Hadamard product f∗g∗κγ,r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f*g*\kappa _{\gamma ,r}$$\end{document} is controlled by the growth of Gaussian means of f and g. Among several consequences of this observation, in particular, we establish the sub-multiplicative property f∗g∗κF1≤‖f‖F1‖g‖F1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left\| f*g*\kappa \right\| _{\mathrm {F}^1}\le \Vert f\Vert _{\mathrm {F}^1}\Vert g\Vert _{\mathrm {F}^1}$$\end{document} for functions in the classical Fock space F1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm {F}^1$$\end{document}.
    13 schema:genre article
    14 schema:inLanguage en
    15 schema:isAccessibleForFree false
    16 schema:isPartOf N346cc925150d4d2cbe6053bf1bc07e81
    17 Ne543b8458f444c6e989e5c6283ad927c
    18 sg:journal.1136515
    19 schema:keywords Fock space
    20 Gaussian means
    21 Hadamard product
    22 classical Fock space
    23 consequences
    24 entire functions
    25 function
    26 growth
    27 integral means
    28 means
    29 observations
    30 products
    31 properties
    32 relation
    33 space
    34 weighted Fock spaces
    35 κγ
    36 schema:name Gaussian integral means in the Fock space
    37 schema:pagination 51
    38 schema:productId N7706dace950b4a30892916ebf0d81c69
    39 Naed0cbae400848978c879bc537e76612
    40 schema:sameAs https://app.dimensions.ai/details/publication/pub.1143969325
    41 https://doi.org/10.1007/s13398-021-01196-z
    42 schema:sdDatePublished 2022-05-20T07:37
    43 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    44 schema:sdPublisher Nd33a9a6011a041d38fcdaf3967906562
    45 schema:url https://doi.org/10.1007/s13398-021-01196-z
    46 sgo:license sg:explorer/license/
    47 sgo:sdDataset articles
    48 rdf:type schema:ScholarlyArticle
    49 N2363a8eb3b9142e898fc0cfbe7ddefa8 rdf:first sg:person.012172146453.45
    50 rdf:rest N63357cb8b91b406fb003623d000a36f9
    51 N346cc925150d4d2cbe6053bf1bc07e81 schema:volumeNumber 116
    52 rdf:type schema:PublicationVolume
    53 N63357cb8b91b406fb003623d000a36f9 rdf:first sg:person.012272126221.11
    54 rdf:rest rdf:nil
    55 N7706dace950b4a30892916ebf0d81c69 schema:name doi
    56 schema:value 10.1007/s13398-021-01196-z
    57 rdf:type schema:PropertyValue
    58 Naed0cbae400848978c879bc537e76612 schema:name dimensions_id
    59 schema:value pub.1143969325
    60 rdf:type schema:PropertyValue
    61 Nd33a9a6011a041d38fcdaf3967906562 schema:name Springer Nature - SN SciGraph project
    62 rdf:type schema:Organization
    63 Ne543b8458f444c6e989e5c6283ad927c schema:issueNumber 1
    64 rdf:type schema:PublicationIssue
    65 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
    66 schema:name Physical Sciences
    67 rdf:type schema:DefinedTerm
    68 anzsrc-for:0201 schema:inDefinedTermSet anzsrc-for:
    69 schema:name Astronomical and Space Sciences
    70 rdf:type schema:DefinedTerm
    71 sg:journal.1136515 schema:issn 1578-7303
    72 1579-1505
    73 schema:name Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas
    74 schema:publisher Springer Nature
    75 rdf:type schema:Periodical
    76 sg:person.012172146453.45 schema:affiliation grid-institutes:grid.7149.b
    77 schema:familyName Karapetrović
    78 schema:givenName Boban
    79 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012172146453.45
    80 rdf:type schema:Person
    81 sg:person.012272126221.11 schema:affiliation grid-institutes:grid.23856.3a
    82 schema:familyName Mashreghi
    83 schema:givenName Javad
    84 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012272126221.11
    85 rdf:type schema:Person
    86 sg:pub.10.1007/978-1-4419-8801-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027231096
    87 https://doi.org/10.1007/978-1-4419-8801-0
    88 rdf:type schema:CreativeWork
    89 sg:pub.10.1007/bf01180596 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040183690
    90 https://doi.org/10.1007/bf01180596
    91 rdf:type schema:CreativeWork
    92 sg:pub.10.1007/bf02417870 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041053473
    93 https://doi.org/10.1007/bf02417870
    94 rdf:type schema:CreativeWork
    95 sg:pub.10.1007/s11785-013-0339-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1003402822
    96 https://doi.org/10.1007/s11785-013-0339-x
    97 rdf:type schema:CreativeWork
    98 sg:pub.10.1007/s13398-019-00754-w schema:sameAs https://app.dimensions.ai/details/publication/pub.1123185706
    99 https://doi.org/10.1007/s13398-019-00754-w
    100 rdf:type schema:CreativeWork
    101 sg:pub.10.1007/s43034-020-00059-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1124934473
    102 https://doi.org/10.1007/s43034-020-00059-9
    103 rdf:type schema:CreativeWork
    104 grid-institutes:grid.23856.3a schema:alternateName Département de Mathématiques et de Statistique, Université Laval, G1K 0A6, Quebec, QC, Canada
    105 schema:name Département de Mathématiques et de Statistique, Université Laval, G1K 0A6, Quebec, QC, Canada
    106 rdf:type schema:Organization
    107 grid-institutes:grid.7149.b schema:alternateName Faculty of Mathematics, University of Belgrade, Studentski trg 16, Belgrade, Serbia
    108 schema:name Faculty of Mathematics, University of Belgrade, Studentski trg 16, Belgrade, Serbia
    109 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...