2021-12-17
AUTHORSBoban Karapetrović, Javad Mashreghi
ABSTRACTWe explore the relation between Hadamard products of two entire functions in the weighted Fock space Fγp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm {F}^p_\gamma $$\end{document} and their integral Gaussian means. By introducing the key auxiliary function κγ,r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\kappa _{\gamma ,r}$$\end{document}, we show that the growth of the Gaussian means of the Hadamard product f∗g∗κγ,r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f*g*\kappa _{\gamma ,r}$$\end{document} is controlled by the growth of Gaussian means of f and g. Among several consequences of this observation, in particular, we establish the sub-multiplicative property f∗g∗κF1≤‖f‖F1‖g‖F1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left\| f*g*\kappa \right\| _{\mathrm {F}^1}\le \Vert f\Vert _{\mathrm {F}^1}\Vert g\Vert _{\mathrm {F}^1}$$\end{document} for functions in the classical Fock space F1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm {F}^1$$\end{document}. More... »
PAGES51
Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas
ISSUE1
VOLUME116
http://scigraph.springernature.com/pub.10.1007/s13398-021-01196-z
DOIhttp://dx.doi.org/10.1007/s13398-021-01196-z
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1143969325
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Physical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0201",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Astronomical and Space Sciences",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Faculty of Mathematics, University of Belgrade, Studentski trg 16, Belgrade, Serbia",
"id": "http://www.grid.ac/institutes/grid.7149.b",
"name": [
"Faculty of Mathematics, University of Belgrade, Studentski trg 16, Belgrade, Serbia"
],
"type": "Organization"
},
"familyName": "Karapetrovi\u0107",
"givenName": "Boban",
"id": "sg:person.012172146453.45",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012172146453.45"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "D\u00e9partement de Math\u00e9matiques et de Statistique, Universit\u00e9 Laval, G1K 0A6, Quebec, QC, Canada",
"id": "http://www.grid.ac/institutes/grid.23856.3a",
"name": [
"D\u00e9partement de Math\u00e9matiques et de Statistique, Universit\u00e9 Laval, G1K 0A6, Quebec, QC, Canada"
],
"type": "Organization"
},
"familyName": "Mashreghi",
"givenName": "Javad",
"id": "sg:person.012272126221.11",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012272126221.11"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/978-1-4419-8801-0",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1027231096",
"https://doi.org/10.1007/978-1-4419-8801-0"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s11785-013-0339-x",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1003402822",
"https://doi.org/10.1007/s11785-013-0339-x"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf02417870",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1041053473",
"https://doi.org/10.1007/bf02417870"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s13398-019-00754-w",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1123185706",
"https://doi.org/10.1007/s13398-019-00754-w"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf01180596",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1040183690",
"https://doi.org/10.1007/bf01180596"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s43034-020-00059-9",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1124934473",
"https://doi.org/10.1007/s43034-020-00059-9"
],
"type": "CreativeWork"
}
],
"datePublished": "2021-12-17",
"datePublishedReg": "2021-12-17",
"description": "We explore the relation between Hadamard products of two entire functions in the weighted Fock space F\u03b3p\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\mathrm {F}^p_\\gamma $$\\end{document} and their integral Gaussian means. By introducing the key auxiliary function \u03ba\u03b3,r\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\kappa _{\\gamma ,r}$$\\end{document}, we show that the growth of the Gaussian means of the Hadamard product f\u2217g\u2217\u03ba\u03b3,r\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$f*g*\\kappa _{\\gamma ,r}$$\\end{document} is controlled by the growth of Gaussian means of f and g. Among several consequences of this observation, in particular, we establish the sub-multiplicative property f\u2217g\u2217\u03baF1\u2264\u2016f\u2016F1\u2016g\u2016F1\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\left\\| f*g*\\kappa \\right\\| _{\\mathrm {F}^1}\\le \\Vert f\\Vert _{\\mathrm {F}^1}\\Vert g\\Vert _{\\mathrm {F}^1}$$\\end{document} for functions in the classical Fock space F1\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\mathrm {F}^1$$\\end{document}.",
"genre": "article",
"id": "sg:pub.10.1007/s13398-021-01196-z",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1136515",
"issn": [
"1578-7303",
"1579-1505"
],
"name": "Revista de la Real Academia de Ciencias Exactas, F\u00edsicas y Naturales. Serie A. Matem\u00e1ticas",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "1",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "116"
}
],
"keywords": [
"Fock space",
"Gaussian means",
"Hadamard product",
"classical Fock space",
"entire functions",
"weighted Fock spaces",
"integral means",
"space",
"function",
"means",
"properties",
"observations",
"relation",
"\u03ba\u03b3",
"consequences",
"products",
"growth"
],
"name": "Gaussian integral means in the Fock space",
"pagination": "51",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1143969325"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s13398-021-01196-z"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s13398-021-01196-z",
"https://app.dimensions.ai/details/publication/pub.1143969325"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-20T07:37",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_878.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/s13398-021-01196-z"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s13398-021-01196-z'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s13398-021-01196-z'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s13398-021-01196-z'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s13398-021-01196-z'
This table displays all metadata directly associated to this object as RDF triples.
109 TRIPLES
22 PREDICATES
48 URIs
34 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/s13398-021-01196-z | schema:about | anzsrc-for:02 |
2 | ″ | ″ | anzsrc-for:0201 |
3 | ″ | schema:author | N2363a8eb3b9142e898fc0cfbe7ddefa8 |
4 | ″ | schema:citation | sg:pub.10.1007/978-1-4419-8801-0 |
5 | ″ | ″ | sg:pub.10.1007/bf01180596 |
6 | ″ | ″ | sg:pub.10.1007/bf02417870 |
7 | ″ | ″ | sg:pub.10.1007/s11785-013-0339-x |
8 | ″ | ″ | sg:pub.10.1007/s13398-019-00754-w |
9 | ″ | ″ | sg:pub.10.1007/s43034-020-00059-9 |
10 | ″ | schema:datePublished | 2021-12-17 |
11 | ″ | schema:datePublishedReg | 2021-12-17 |
12 | ″ | schema:description | We explore the relation between Hadamard products of two entire functions in the weighted Fock space Fγp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm {F}^p_\gamma $$\end{document} and their integral Gaussian means. By introducing the key auxiliary function κγ,r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\kappa _{\gamma ,r}$$\end{document}, we show that the growth of the Gaussian means of the Hadamard product f∗g∗κγ,r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f*g*\kappa _{\gamma ,r}$$\end{document} is controlled by the growth of Gaussian means of f and g. Among several consequences of this observation, in particular, we establish the sub-multiplicative property f∗g∗κF1≤‖f‖F1‖g‖F1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left\| f*g*\kappa \right\| _{\mathrm {F}^1}\le \Vert f\Vert _{\mathrm {F}^1}\Vert g\Vert _{\mathrm {F}^1}$$\end{document} for functions in the classical Fock space F1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm {F}^1$$\end{document}. |
13 | ″ | schema:genre | article |
14 | ″ | schema:inLanguage | en |
15 | ″ | schema:isAccessibleForFree | false |
16 | ″ | schema:isPartOf | N346cc925150d4d2cbe6053bf1bc07e81 |
17 | ″ | ″ | Ne543b8458f444c6e989e5c6283ad927c |
18 | ″ | ″ | sg:journal.1136515 |
19 | ″ | schema:keywords | Fock space |
20 | ″ | ″ | Gaussian means |
21 | ″ | ″ | Hadamard product |
22 | ″ | ″ | classical Fock space |
23 | ″ | ″ | consequences |
24 | ″ | ″ | entire functions |
25 | ″ | ″ | function |
26 | ″ | ″ | growth |
27 | ″ | ″ | integral means |
28 | ″ | ″ | means |
29 | ″ | ″ | observations |
30 | ″ | ″ | products |
31 | ″ | ″ | properties |
32 | ″ | ″ | relation |
33 | ″ | ″ | space |
34 | ″ | ″ | weighted Fock spaces |
35 | ″ | ″ | κγ |
36 | ″ | schema:name | Gaussian integral means in the Fock space |
37 | ″ | schema:pagination | 51 |
38 | ″ | schema:productId | N7706dace950b4a30892916ebf0d81c69 |
39 | ″ | ″ | Naed0cbae400848978c879bc537e76612 |
40 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1143969325 |
41 | ″ | ″ | https://doi.org/10.1007/s13398-021-01196-z |
42 | ″ | schema:sdDatePublished | 2022-05-20T07:37 |
43 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
44 | ″ | schema:sdPublisher | Nd33a9a6011a041d38fcdaf3967906562 |
45 | ″ | schema:url | https://doi.org/10.1007/s13398-021-01196-z |
46 | ″ | sgo:license | sg:explorer/license/ |
47 | ″ | sgo:sdDataset | articles |
48 | ″ | rdf:type | schema:ScholarlyArticle |
49 | N2363a8eb3b9142e898fc0cfbe7ddefa8 | rdf:first | sg:person.012172146453.45 |
50 | ″ | rdf:rest | N63357cb8b91b406fb003623d000a36f9 |
51 | N346cc925150d4d2cbe6053bf1bc07e81 | schema:volumeNumber | 116 |
52 | ″ | rdf:type | schema:PublicationVolume |
53 | N63357cb8b91b406fb003623d000a36f9 | rdf:first | sg:person.012272126221.11 |
54 | ″ | rdf:rest | rdf:nil |
55 | N7706dace950b4a30892916ebf0d81c69 | schema:name | doi |
56 | ″ | schema:value | 10.1007/s13398-021-01196-z |
57 | ″ | rdf:type | schema:PropertyValue |
58 | Naed0cbae400848978c879bc537e76612 | schema:name | dimensions_id |
59 | ″ | schema:value | pub.1143969325 |
60 | ″ | rdf:type | schema:PropertyValue |
61 | Nd33a9a6011a041d38fcdaf3967906562 | schema:name | Springer Nature - SN SciGraph project |
62 | ″ | rdf:type | schema:Organization |
63 | Ne543b8458f444c6e989e5c6283ad927c | schema:issueNumber | 1 |
64 | ″ | rdf:type | schema:PublicationIssue |
65 | anzsrc-for:02 | schema:inDefinedTermSet | anzsrc-for: |
66 | ″ | schema:name | Physical Sciences |
67 | ″ | rdf:type | schema:DefinedTerm |
68 | anzsrc-for:0201 | schema:inDefinedTermSet | anzsrc-for: |
69 | ″ | schema:name | Astronomical and Space Sciences |
70 | ″ | rdf:type | schema:DefinedTerm |
71 | sg:journal.1136515 | schema:issn | 1578-7303 |
72 | ″ | ″ | 1579-1505 |
73 | ″ | schema:name | Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas |
74 | ″ | schema:publisher | Springer Nature |
75 | ″ | rdf:type | schema:Periodical |
76 | sg:person.012172146453.45 | schema:affiliation | grid-institutes:grid.7149.b |
77 | ″ | schema:familyName | Karapetrović |
78 | ″ | schema:givenName | Boban |
79 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012172146453.45 |
80 | ″ | rdf:type | schema:Person |
81 | sg:person.012272126221.11 | schema:affiliation | grid-institutes:grid.23856.3a |
82 | ″ | schema:familyName | Mashreghi |
83 | ″ | schema:givenName | Javad |
84 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012272126221.11 |
85 | ″ | rdf:type | schema:Person |
86 | sg:pub.10.1007/978-1-4419-8801-0 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1027231096 |
87 | ″ | ″ | https://doi.org/10.1007/978-1-4419-8801-0 |
88 | ″ | rdf:type | schema:CreativeWork |
89 | sg:pub.10.1007/bf01180596 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1040183690 |
90 | ″ | ″ | https://doi.org/10.1007/bf01180596 |
91 | ″ | rdf:type | schema:CreativeWork |
92 | sg:pub.10.1007/bf02417870 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1041053473 |
93 | ″ | ″ | https://doi.org/10.1007/bf02417870 |
94 | ″ | rdf:type | schema:CreativeWork |
95 | sg:pub.10.1007/s11785-013-0339-x | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1003402822 |
96 | ″ | ″ | https://doi.org/10.1007/s11785-013-0339-x |
97 | ″ | rdf:type | schema:CreativeWork |
98 | sg:pub.10.1007/s13398-019-00754-w | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1123185706 |
99 | ″ | ″ | https://doi.org/10.1007/s13398-019-00754-w |
100 | ″ | rdf:type | schema:CreativeWork |
101 | sg:pub.10.1007/s43034-020-00059-9 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1124934473 |
102 | ″ | ″ | https://doi.org/10.1007/s43034-020-00059-9 |
103 | ″ | rdf:type | schema:CreativeWork |
104 | grid-institutes:grid.23856.3a | schema:alternateName | Département de Mathématiques et de Statistique, Université Laval, G1K 0A6, Quebec, QC, Canada |
105 | ″ | schema:name | Département de Mathématiques et de Statistique, Université Laval, G1K 0A6, Quebec, QC, Canada |
106 | ″ | rdf:type | schema:Organization |
107 | grid-institutes:grid.7149.b | schema:alternateName | Faculty of Mathematics, University of Belgrade, Studentski trg 16, Belgrade, Serbia |
108 | ″ | schema:name | Faculty of Mathematics, University of Belgrade, Studentski trg 16, Belgrade, Serbia |
109 | ″ | rdf:type | schema:Organization |