Variational inequality over the set of common solutions of a system of bilevel variational inequality problem with applications View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2021-12-01

AUTHORS

Mohammad Eslamian

ABSTRACT

In this paper, we study variational inequality problem over the set of common solutions of a system of bilevel variational inequality problem. We present a new and efficient iterative method for solving this problem and establish its strong convergence. As applications, we use our algorithm for solving the multiple set split variational inequality problem, the hierarchical variational inequality problem, the bilevel variational inequality problem and hierarchical minimization problem. More... »

PAGES

47

References to SciGraph publications

  • 2014-05-30. Iterative Methods for Generalized Split Feasibility Problems in Hilbert Spaces in SET-VALUED AND VARIATIONAL ANALYSIS
  • 2021-03-27. A theorem for solving Banach generalized system of variational inequality problems and fixed point problem in uniformly convex and 2-uniformly smooth Banach space in REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS, FÍSICAS Y NATURALES. SERIE A. MATEMÁTICAS
  • 2001. Combined Relaxation Methods for Variational Inequalities in NONE
  • 2010-10-30. Fixed point optimization algorithm and its application to power control in CDMA data networks in MATHEMATICAL PROGRAMMING
  • 2021-08-07. Shrinking projection algorithm for solving a finite family of quasi-variational inclusion problems in Hadamard manifold in REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS, FÍSICAS Y NATURALES. SERIE A. MATEMÁTICAS
  • 2021-08-23. An accelerated extragradient algorithm for bilevel pseudomonotone variational inequality problems with application to optimal control problems in REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS, FÍSICAS Y NATURALES. SERIE A. MATEMÁTICAS
  • 2019-11-27. Self adaptive inertial subgradient extragradient algorithms for solving pseudomonotone variational inequality problems in OPTIMIZATION LETTERS
  • 2014-03. An Extragradient Algorithm for Monotone Variational Inequalities in CYBERNETICS AND SYSTEMS ANALYSIS
  • 2018-03-28. Strong convergence result for solving monotone variational inequalities in Hilbert space in NUMERICAL ALGORITHMS
  • 2017-02-27. Inertial projection and contraction algorithms for variational inequalities in JOURNAL OF GLOBAL OPTIMIZATION
  • 2011-08-05. Algorithms for the Split Variational Inequality Problem in NUMERICAL ALGORITHMS
  • 2014-07-17. An Inertial Forward-Backward Algorithm for Monotone Inclusions in JOURNAL OF MATHEMATICAL IMAGING AND VISION
  • 1998. Nonsmooth Approach to Optimization Problems with Equilibrium Constraints, Theory, Applications and Numerical Results in NONE
  • 2021-05-22. Error bounds and gap functions for various variational type problems in REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS, FÍSICAS Y NATURALES. SERIE A. MATEMÁTICAS
  • 2020-08-25. Isotonicity of the proximity operator and mixed variational inequalities in Hilbert spaces in REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS, FÍSICAS Y NATURALES. SERIE A. MATEMÁTICAS
  • 2013-12-13. Strong Convergence of the Halpern Subgradient Extragradient Method for Solving Variational Inequalities in Hilbert Spaces in JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS
  • 2003-08. Weak Convergence Theorems for Nonexpansive Mappings and Monotone Mappings in JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS
  • 2021-05-10. A new shrinking projection algorithm for a generalized mixed variational-like inequality problem and asymptotically quasi-ϕ-nonexpansive mapping in a Banach space in REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS, FÍSICAS Y NATURALES. SERIE A. MATEMÁTICAS
  • 2012-02-15. An extragradient algorithm for solving bilevel pseudomonotone variational inequalities in JOURNAL OF GLOBAL OPTIMIZATION
  • 1980-11. A modification of the Arrow-Hurwicz method for search of saddle points in MATHEMATICAL NOTES
  • 1985. Nonlinear Functional Analysis and its Applications, III: Variational Methods and Optimization in NONE
  • 2020-07-28. Convergence theorem for solving a new concept of the split variational inequality problems and application in REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS, FÍSICAS Y NATURALES. SERIE A. MATEMÁTICAS
  • 2020-03-12. Strong convergence analysis of common variational inclusion problems involving an inertial parallel monotone hybrid method for a novel application to image restoration in REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS, FÍSICAS Y NATURALES. SERIE A. MATEMÁTICAS
  • 2011-09-06. Common Solutions to Variational Inequalities in SET-VALUED AND VARIATIONAL ANALYSIS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s13398-021-01193-2

    DOI

    http://dx.doi.org/10.1007/s13398-021-01193-2

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1143534737


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Numerical and Computational Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "School of Mathematics, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5746, Tehran, Iran", 
              "id": "http://www.grid.ac/institutes/grid.418744.a", 
              "name": [
                "Department of Mathematics, University of Science and Technology of Mazandaran, P.O. Box 48518-78413, Behshahr, Iran", 
                "School of Mathematics, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5746, Tehran, Iran"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Eslamian", 
            "givenName": "Mohammad", 
            "id": "sg:person.013367420311.88", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013367420311.88"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s11075-011-9490-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052842978", 
              "https://doi.org/10.1007/s11075-011-9490-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s13398-020-00909-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1129718882", 
              "https://doi.org/10.1007/s13398-020-00909-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11228-014-0285-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018785874", 
              "https://doi.org/10.1007/s11228-014-0285-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-56886-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035126257", 
              "https://doi.org/10.1007/978-3-642-56886-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10957-013-0494-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051861793", 
              "https://doi.org/10.1007/s10957-013-0494-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01141092", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030362774", 
              "https://doi.org/10.1007/bf01141092"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s13398-021-01049-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1137887116", 
              "https://doi.org/10.1007/s13398-021-01049-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s13398-021-01116-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1140592170", 
              "https://doi.org/10.1007/s13398-021-01116-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11228-011-0192-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025684450", 
              "https://doi.org/10.1007/s11228-011-0192-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s13398-021-01036-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1136722844", 
              "https://doi.org/10.1007/s13398-021-01036-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s13398-020-00827-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1125620426", 
              "https://doi.org/10.1007/s13398-020-00827-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10898-012-9870-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001673400", 
              "https://doi.org/10.1007/s10898-012-9870-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4757-2825-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023862666", 
              "https://doi.org/10.1007/978-1-4757-2825-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s13398-021-01066-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1138269624", 
              "https://doi.org/10.1007/s13398-021-01066-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1025407607560", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016546477", 
              "https://doi.org/10.1023/a:1025407607560"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10851-014-0523-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046143184", 
              "https://doi.org/10.1007/s10851-014-0523-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4612-5020-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048918053", 
              "https://doi.org/10.1007/978-1-4612-5020-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11590-019-01511-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1122947010", 
              "https://doi.org/10.1007/s11590-019-01511-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10559-014-9614-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016798009", 
              "https://doi.org/10.1007/s10559-014-9614-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10107-010-0427-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040469089", 
              "https://doi.org/10.1007/s10107-010-0427-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s13398-020-00902-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1130333916", 
              "https://doi.org/10.1007/s13398-020-00902-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11075-018-0504-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101820823", 
              "https://doi.org/10.1007/s11075-018-0504-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s13398-021-01105-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1140271892", 
              "https://doi.org/10.1007/s13398-021-01105-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10898-017-0506-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084027825", 
              "https://doi.org/10.1007/s10898-017-0506-0"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2021-12-01", 
        "datePublishedReg": "2021-12-01", 
        "description": "In this paper, we study variational inequality problem over the set of common solutions of a system of bilevel variational inequality problem. We present a new and efficient iterative method for solving this problem and establish its strong convergence. As applications, we use our algorithm for solving the multiple set split variational inequality problem, the hierarchical variational inequality problem, the bilevel variational inequality problem and hierarchical minimization problem.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s13398-021-01193-2", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136515", 
            "issn": [
              "1578-7303", 
              "1579-1505"
            ], 
            "name": "Revista de la Real Academia de Ciencias Exactas, F\u00edsicas y Naturales. Serie A. Matem\u00e1ticas", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "116"
          }
        ], 
        "keywords": [
          "common solution", 
          "efficient iterative method", 
          "multiple sets", 
          "minimization problem", 
          "set", 
          "solution", 
          "system", 
          "iterative method", 
          "applications", 
          "algorithm", 
          "hierarchical variational inequality problem", 
          "hierarchical minimization problems", 
          "variational inequality problem", 
          "inequality problem", 
          "method", 
          "convergence", 
          "strong convergence", 
          "variational inequalities", 
          "problem", 
          "inequality", 
          "paper"
        ], 
        "name": "Variational inequality over the set of common solutions of a system of bilevel variational inequality problem with applications", 
        "pagination": "47", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1143534737"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s13398-021-01193-2"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s13398-021-01193-2", 
          "https://app.dimensions.ai/details/publication/pub.1143534737"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-05-20T07:39", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_908.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s13398-021-01193-2"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s13398-021-01193-2'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s13398-021-01193-2'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s13398-021-01193-2'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s13398-021-01193-2'


     

    This table displays all metadata directly associated to this object as RDF triples.

    176 TRIPLES      22 PREDICATES      70 URIs      38 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s13398-021-01193-2 schema:about anzsrc-for:01
    2 anzsrc-for:0103
    3 schema:author N0f47d9be9f3c42fab2b547ed291b5268
    4 schema:citation sg:pub.10.1007/978-1-4612-5020-3
    5 sg:pub.10.1007/978-1-4757-2825-5
    6 sg:pub.10.1007/978-3-642-56886-2
    7 sg:pub.10.1007/bf01141092
    8 sg:pub.10.1007/s10107-010-0427-x
    9 sg:pub.10.1007/s10559-014-9614-8
    10 sg:pub.10.1007/s10851-014-0523-2
    11 sg:pub.10.1007/s10898-012-9870-y
    12 sg:pub.10.1007/s10898-017-0506-0
    13 sg:pub.10.1007/s10957-013-0494-2
    14 sg:pub.10.1007/s11075-011-9490-5
    15 sg:pub.10.1007/s11075-018-0504-4
    16 sg:pub.10.1007/s11228-011-0192-x
    17 sg:pub.10.1007/s11228-014-0285-4
    18 sg:pub.10.1007/s11590-019-01511-z
    19 sg:pub.10.1007/s13398-020-00827-1
    20 sg:pub.10.1007/s13398-020-00902-7
    21 sg:pub.10.1007/s13398-020-00909-0
    22 sg:pub.10.1007/s13398-021-01036-0
    23 sg:pub.10.1007/s13398-021-01049-9
    24 sg:pub.10.1007/s13398-021-01066-8
    25 sg:pub.10.1007/s13398-021-01105-4
    26 sg:pub.10.1007/s13398-021-01116-1
    27 sg:pub.10.1023/a:1025407607560
    28 schema:datePublished 2021-12-01
    29 schema:datePublishedReg 2021-12-01
    30 schema:description In this paper, we study variational inequality problem over the set of common solutions of a system of bilevel variational inequality problem. We present a new and efficient iterative method for solving this problem and establish its strong convergence. As applications, we use our algorithm for solving the multiple set split variational inequality problem, the hierarchical variational inequality problem, the bilevel variational inequality problem and hierarchical minimization problem.
    31 schema:genre article
    32 schema:inLanguage en
    33 schema:isAccessibleForFree false
    34 schema:isPartOf N7bf1c9a2230542d09ea8d5836fbe81f0
    35 Nbc2a6e6f4dfa408ab1bc4645bf95d28e
    36 sg:journal.1136515
    37 schema:keywords algorithm
    38 applications
    39 common solution
    40 convergence
    41 efficient iterative method
    42 hierarchical minimization problems
    43 hierarchical variational inequality problem
    44 inequality
    45 inequality problem
    46 iterative method
    47 method
    48 minimization problem
    49 multiple sets
    50 paper
    51 problem
    52 set
    53 solution
    54 strong convergence
    55 system
    56 variational inequalities
    57 variational inequality problem
    58 schema:name Variational inequality over the set of common solutions of a system of bilevel variational inequality problem with applications
    59 schema:pagination 47
    60 schema:productId N7fbb20c1a91e441b8d8a2ecb7e05d1a6
    61 Ne292069881854ec7b25d561dd185bdb8
    62 schema:sameAs https://app.dimensions.ai/details/publication/pub.1143534737
    63 https://doi.org/10.1007/s13398-021-01193-2
    64 schema:sdDatePublished 2022-05-20T07:39
    65 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    66 schema:sdPublisher Ncc67a6cc0796488c96fd66aab8b04002
    67 schema:url https://doi.org/10.1007/s13398-021-01193-2
    68 sgo:license sg:explorer/license/
    69 sgo:sdDataset articles
    70 rdf:type schema:ScholarlyArticle
    71 N0f47d9be9f3c42fab2b547ed291b5268 rdf:first sg:person.013367420311.88
    72 rdf:rest rdf:nil
    73 N7bf1c9a2230542d09ea8d5836fbe81f0 schema:volumeNumber 116
    74 rdf:type schema:PublicationVolume
    75 N7fbb20c1a91e441b8d8a2ecb7e05d1a6 schema:name dimensions_id
    76 schema:value pub.1143534737
    77 rdf:type schema:PropertyValue
    78 Nbc2a6e6f4dfa408ab1bc4645bf95d28e schema:issueNumber 1
    79 rdf:type schema:PublicationIssue
    80 Ncc67a6cc0796488c96fd66aab8b04002 schema:name Springer Nature - SN SciGraph project
    81 rdf:type schema:Organization
    82 Ne292069881854ec7b25d561dd185bdb8 schema:name doi
    83 schema:value 10.1007/s13398-021-01193-2
    84 rdf:type schema:PropertyValue
    85 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    86 schema:name Mathematical Sciences
    87 rdf:type schema:DefinedTerm
    88 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
    89 schema:name Numerical and Computational Mathematics
    90 rdf:type schema:DefinedTerm
    91 sg:journal.1136515 schema:issn 1578-7303
    92 1579-1505
    93 schema:name Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas
    94 schema:publisher Springer Nature
    95 rdf:type schema:Periodical
    96 sg:person.013367420311.88 schema:affiliation grid-institutes:grid.418744.a
    97 schema:familyName Eslamian
    98 schema:givenName Mohammad
    99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013367420311.88
    100 rdf:type schema:Person
    101 sg:pub.10.1007/978-1-4612-5020-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048918053
    102 https://doi.org/10.1007/978-1-4612-5020-3
    103 rdf:type schema:CreativeWork
    104 sg:pub.10.1007/978-1-4757-2825-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023862666
    105 https://doi.org/10.1007/978-1-4757-2825-5
    106 rdf:type schema:CreativeWork
    107 sg:pub.10.1007/978-3-642-56886-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035126257
    108 https://doi.org/10.1007/978-3-642-56886-2
    109 rdf:type schema:CreativeWork
    110 sg:pub.10.1007/bf01141092 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030362774
    111 https://doi.org/10.1007/bf01141092
    112 rdf:type schema:CreativeWork
    113 sg:pub.10.1007/s10107-010-0427-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1040469089
    114 https://doi.org/10.1007/s10107-010-0427-x
    115 rdf:type schema:CreativeWork
    116 sg:pub.10.1007/s10559-014-9614-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016798009
    117 https://doi.org/10.1007/s10559-014-9614-8
    118 rdf:type schema:CreativeWork
    119 sg:pub.10.1007/s10851-014-0523-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046143184
    120 https://doi.org/10.1007/s10851-014-0523-2
    121 rdf:type schema:CreativeWork
    122 sg:pub.10.1007/s10898-012-9870-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1001673400
    123 https://doi.org/10.1007/s10898-012-9870-y
    124 rdf:type schema:CreativeWork
    125 sg:pub.10.1007/s10898-017-0506-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084027825
    126 https://doi.org/10.1007/s10898-017-0506-0
    127 rdf:type schema:CreativeWork
    128 sg:pub.10.1007/s10957-013-0494-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051861793
    129 https://doi.org/10.1007/s10957-013-0494-2
    130 rdf:type schema:CreativeWork
    131 sg:pub.10.1007/s11075-011-9490-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052842978
    132 https://doi.org/10.1007/s11075-011-9490-5
    133 rdf:type schema:CreativeWork
    134 sg:pub.10.1007/s11075-018-0504-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101820823
    135 https://doi.org/10.1007/s11075-018-0504-4
    136 rdf:type schema:CreativeWork
    137 sg:pub.10.1007/s11228-011-0192-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1025684450
    138 https://doi.org/10.1007/s11228-011-0192-x
    139 rdf:type schema:CreativeWork
    140 sg:pub.10.1007/s11228-014-0285-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018785874
    141 https://doi.org/10.1007/s11228-014-0285-4
    142 rdf:type schema:CreativeWork
    143 sg:pub.10.1007/s11590-019-01511-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1122947010
    144 https://doi.org/10.1007/s11590-019-01511-z
    145 rdf:type schema:CreativeWork
    146 sg:pub.10.1007/s13398-020-00827-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1125620426
    147 https://doi.org/10.1007/s13398-020-00827-1
    148 rdf:type schema:CreativeWork
    149 sg:pub.10.1007/s13398-020-00902-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1130333916
    150 https://doi.org/10.1007/s13398-020-00902-7
    151 rdf:type schema:CreativeWork
    152 sg:pub.10.1007/s13398-020-00909-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1129718882
    153 https://doi.org/10.1007/s13398-020-00909-0
    154 rdf:type schema:CreativeWork
    155 sg:pub.10.1007/s13398-021-01036-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1136722844
    156 https://doi.org/10.1007/s13398-021-01036-0
    157 rdf:type schema:CreativeWork
    158 sg:pub.10.1007/s13398-021-01049-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1137887116
    159 https://doi.org/10.1007/s13398-021-01049-9
    160 rdf:type schema:CreativeWork
    161 sg:pub.10.1007/s13398-021-01066-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1138269624
    162 https://doi.org/10.1007/s13398-021-01066-8
    163 rdf:type schema:CreativeWork
    164 sg:pub.10.1007/s13398-021-01105-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1140271892
    165 https://doi.org/10.1007/s13398-021-01105-4
    166 rdf:type schema:CreativeWork
    167 sg:pub.10.1007/s13398-021-01116-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1140592170
    168 https://doi.org/10.1007/s13398-021-01116-1
    169 rdf:type schema:CreativeWork
    170 sg:pub.10.1023/a:1025407607560 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016546477
    171 https://doi.org/10.1023/a:1025407607560
    172 rdf:type schema:CreativeWork
    173 grid-institutes:grid.418744.a schema:alternateName School of Mathematics, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5746, Tehran, Iran
    174 schema:name Department of Mathematics, University of Science and Technology of Mazandaran, P.O. Box 48518-78413, Behshahr, Iran
    175 School of Mathematics, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5746, Tehran, Iran
    176 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...