On a new type of boundary condition View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2021-11-27

AUTHORS

Pablo Pedregal

ABSTRACT

Pushed by inverse problems in conductivity in the 3-dimensional setting, we introduce new types of boundary conditions for variational and PDE problems, that in some sense cover the middle space between the classical Dirichlet and Neumann conditions, meant in a essentially different way with respect to mixed boundary conditions. These new boundary conditions are associated with special subspaces of Sobolev spaces between H01(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^1_0(\Omega )$$\end{document} and the full space H1(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^1(\Omega )$$\end{document}. Though problems can be considered in W1,p(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W^{1, p}(\Omega )$$\end{document} for p≠2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\ne 2$$\end{document}, in this initial contribution we just examine existence and optimality for regular variational problems under typical assumptions within the scope of H1(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^1(\Omega )$$\end{document}. In addition to the existence of minimizers, we would like to stress the intriguing form of optimality at the boundary ∂Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\partial \Omega $$\end{document}. We especially treat the case N=3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N=3$$\end{document}, which is the most interesting case, and describe similar conditions in any dimension N≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N\ge 2$$\end{document}. The numerical approximation definitely requires new ideas. More... »

PAGES

43

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s13398-021-01189-y

DOI

http://dx.doi.org/10.1007/s13398-021-01189-y

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1143324661


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/20", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Language, Communication and Culture", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/2002", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Cultural Studies", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "INEI, Universidad de Castilla-La Mancha, ETSI Industriales, 13071, Ciudad Real, Spain", 
          "id": "http://www.grid.ac/institutes/grid.8048.4", 
          "name": [
            "INEI, Universidad de Castilla-La Mancha, ETSI Industriales, 13071, Ciudad Real, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pedregal", 
        "givenName": "Pablo", 
        "id": "sg:person.012423464056.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012423464056.49"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bfb0103908", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015851113", 
          "https://doi.org/10.1007/bfb0103908"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00526-021-01945-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1137937349", 
          "https://doi.org/10.1007/s00526-021-01945-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00376255", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003492893", 
          "https://doi.org/10.1007/bf00376255"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-51658-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083909471", 
          "https://doi.org/10.1007/978-3-319-51658-5"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2021-11-27", 
    "datePublishedReg": "2021-11-27", 
    "description": "Pushed by inverse problems in conductivity in the 3-dimensional setting, we introduce new types of boundary conditions for variational and PDE problems, that in some sense cover the middle space between the classical Dirichlet and Neumann conditions, meant in a essentially different way with respect to mixed boundary conditions. These new boundary conditions are associated with special subspaces of Sobolev spaces between H01(\u03a9)\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$H^1_0(\\Omega )$$\\end{document} and the full space H1(\u03a9)\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$H^1(\\Omega )$$\\end{document}. Though problems can be considered in W1,p(\u03a9)\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$W^{1, p}(\\Omega )$$\\end{document} for p\u22602\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$p\\ne 2$$\\end{document}, in this initial contribution we just examine existence and optimality for regular variational problems under typical assumptions within the scope of H1(\u03a9)\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$H^1(\\Omega )$$\\end{document}. In addition to the existence of minimizers, we would like to stress the intriguing form of optimality at the boundary \u2202\u03a9\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\partial \\Omega $$\\end{document}. We especially treat the case N=3\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$N=3$$\\end{document}, which is the most interesting case, and describe similar conditions in any dimension N\u22652\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$N\\ge 2$$\\end{document}. The numerical approximation definitely requires new ideas.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s13398-021-01189-y", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136515", 
        "issn": [
          "1578-7303", 
          "1579-1505"
        ], 
        "name": "Revista de la Real Academia de Ciencias Exactas, F\u00edsicas y Naturales. Serie A. Matem\u00e1ticas", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "116"
      }
    ], 
    "keywords": [
      "boundary conditions", 
      "middle space", 
      "new boundary conditions", 
      "new type", 
      "different ways", 
      "mixed boundary conditions", 
      "inverse problem", 
      "conductivity", 
      "conditions", 
      "sense", 
      "space", 
      "Neumann condition", 
      "full space", 
      "initial contribution", 
      "typical assumption", 
      "intriguing form", 
      "similar conditions", 
      "numerical approximation", 
      "new ideas", 
      "problem", 
      "classical Dirichlet", 
      "way", 
      "variational problem", 
      "form", 
      "interesting case", 
      "idea", 
      "setting", 
      "types", 
      "PDE problems", 
      "Dirichlet", 
      "respect", 
      "contribution", 
      "existence", 
      "optimality", 
      "assumption", 
      "scope", 
      "addition", 
      "cases", 
      "dimensions", 
      "approximation", 
      "variational", 
      "subspace", 
      "existence of minimizers", 
      "Sobolev spaces", 
      "minimizers", 
      "special subspaces"
    ], 
    "name": "On a new type of boundary condition", 
    "pagination": "43", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1143324661"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s13398-021-01189-y"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s13398-021-01189-y", 
      "https://app.dimensions.ai/details/publication/pub.1143324661"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-20T07:38", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_878.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s13398-021-01189-y"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s13398-021-01189-y'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s13398-021-01189-y'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s13398-021-01189-y'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s13398-021-01189-y'


 

This table displays all metadata directly associated to this object as RDF triples.

120 TRIPLES      22 PREDICATES      75 URIs      63 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s13398-021-01189-y schema:about anzsrc-for:20
2 anzsrc-for:2002
3 schema:author N4f92f9716f354ab38655b5a92666a282
4 schema:citation sg:pub.10.1007/978-3-319-51658-5
5 sg:pub.10.1007/bf00376255
6 sg:pub.10.1007/bfb0103908
7 sg:pub.10.1007/s00526-021-01945-3
8 schema:datePublished 2021-11-27
9 schema:datePublishedReg 2021-11-27
10 schema:description Pushed by inverse problems in conductivity in the 3-dimensional setting, we introduce new types of boundary conditions for variational and PDE problems, that in some sense cover the middle space between the classical Dirichlet and Neumann conditions, meant in a essentially different way with respect to mixed boundary conditions. These new boundary conditions are associated with special subspaces of Sobolev spaces between H01(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^1_0(\Omega )$$\end{document} and the full space H1(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^1(\Omega )$$\end{document}. Though problems can be considered in W1,p(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W^{1, p}(\Omega )$$\end{document} for p≠2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\ne 2$$\end{document}, in this initial contribution we just examine existence and optimality for regular variational problems under typical assumptions within the scope of H1(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^1(\Omega )$$\end{document}. In addition to the existence of minimizers, we would like to stress the intriguing form of optimality at the boundary ∂Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\partial \Omega $$\end{document}. We especially treat the case N=3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N=3$$\end{document}, which is the most interesting case, and describe similar conditions in any dimension N≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N\ge 2$$\end{document}. The numerical approximation definitely requires new ideas.
11 schema:genre article
12 schema:inLanguage en
13 schema:isAccessibleForFree false
14 schema:isPartOf N31ea74d6557748ccab46f2a2cb6f4b48
15 Ne6c0bebc9a9d41e6960b281eb602d4ce
16 sg:journal.1136515
17 schema:keywords Dirichlet
18 Neumann condition
19 PDE problems
20 Sobolev spaces
21 addition
22 approximation
23 assumption
24 boundary conditions
25 cases
26 classical Dirichlet
27 conditions
28 conductivity
29 contribution
30 different ways
31 dimensions
32 existence
33 existence of minimizers
34 form
35 full space
36 idea
37 initial contribution
38 interesting case
39 intriguing form
40 inverse problem
41 middle space
42 minimizers
43 mixed boundary conditions
44 new boundary conditions
45 new ideas
46 new type
47 numerical approximation
48 optimality
49 problem
50 respect
51 scope
52 sense
53 setting
54 similar conditions
55 space
56 special subspaces
57 subspace
58 types
59 typical assumption
60 variational
61 variational problem
62 way
63 schema:name On a new type of boundary condition
64 schema:pagination 43
65 schema:productId N66dd128cd31e423ab12703c1a63beb30
66 Nbdac3966948242b4adf06c95a4d0ec0d
67 schema:sameAs https://app.dimensions.ai/details/publication/pub.1143324661
68 https://doi.org/10.1007/s13398-021-01189-y
69 schema:sdDatePublished 2022-05-20T07:38
70 schema:sdLicense https://scigraph.springernature.com/explorer/license/
71 schema:sdPublisher N06d372429398421fa93998d8fac0c4c4
72 schema:url https://doi.org/10.1007/s13398-021-01189-y
73 sgo:license sg:explorer/license/
74 sgo:sdDataset articles
75 rdf:type schema:ScholarlyArticle
76 N06d372429398421fa93998d8fac0c4c4 schema:name Springer Nature - SN SciGraph project
77 rdf:type schema:Organization
78 N31ea74d6557748ccab46f2a2cb6f4b48 schema:volumeNumber 116
79 rdf:type schema:PublicationVolume
80 N4f92f9716f354ab38655b5a92666a282 rdf:first sg:person.012423464056.49
81 rdf:rest rdf:nil
82 N66dd128cd31e423ab12703c1a63beb30 schema:name doi
83 schema:value 10.1007/s13398-021-01189-y
84 rdf:type schema:PropertyValue
85 Nbdac3966948242b4adf06c95a4d0ec0d schema:name dimensions_id
86 schema:value pub.1143324661
87 rdf:type schema:PropertyValue
88 Ne6c0bebc9a9d41e6960b281eb602d4ce schema:issueNumber 1
89 rdf:type schema:PublicationIssue
90 anzsrc-for:20 schema:inDefinedTermSet anzsrc-for:
91 schema:name Language, Communication and Culture
92 rdf:type schema:DefinedTerm
93 anzsrc-for:2002 schema:inDefinedTermSet anzsrc-for:
94 schema:name Cultural Studies
95 rdf:type schema:DefinedTerm
96 sg:journal.1136515 schema:issn 1578-7303
97 1579-1505
98 schema:name Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas
99 schema:publisher Springer Nature
100 rdf:type schema:Periodical
101 sg:person.012423464056.49 schema:affiliation grid-institutes:grid.8048.4
102 schema:familyName Pedregal
103 schema:givenName Pablo
104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012423464056.49
105 rdf:type schema:Person
106 sg:pub.10.1007/978-3-319-51658-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083909471
107 https://doi.org/10.1007/978-3-319-51658-5
108 rdf:type schema:CreativeWork
109 sg:pub.10.1007/bf00376255 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003492893
110 https://doi.org/10.1007/bf00376255
111 rdf:type schema:CreativeWork
112 sg:pub.10.1007/bfb0103908 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015851113
113 https://doi.org/10.1007/bfb0103908
114 rdf:type schema:CreativeWork
115 sg:pub.10.1007/s00526-021-01945-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1137937349
116 https://doi.org/10.1007/s00526-021-01945-3
117 rdf:type schema:CreativeWork
118 grid-institutes:grid.8048.4 schema:alternateName INEI, Universidad de Castilla-La Mancha, ETSI Industriales, 13071, Ciudad Real, Spain
119 schema:name INEI, Universidad de Castilla-La Mancha, ETSI Industriales, 13071, Ciudad Real, Spain
120 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...