Invertibles in topological rings: a new approach View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2021-11-15

AUTHORS

Francisco Javier García-Pacheco, Alejandro Miralles, Marina Murillo-Arcila

ABSTRACT

Every element in the boundary of the group of invertibles of a Banach algebra is a topological zero divisor. We extend this result to the scope of topological rings. In particular, we define a new class of semi-normed rings, called almost absolutely semi-normed rings, which strictly includes the class of absolutely semi-valued rings, and prove that every element in the boundary of the group of invertibles of a complete almost absolutely semi-normed ring is a topological zero divisor. To achieve all these, we have to previously entail an exhaustive study of topological divisors of zero in topological rings. In addition, it is also well known that the group of invertibles is open and the inversion map is continuous and C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {C}$$\end{document}-differentiable in a Banach algebra. We also extend these results to the setting of complete normed rings. Finally, this study allows us to generalize the point, continuous and residual spectra to the scope of Banach algebras. More... »

PAGES

38

References to SciGraph publications

  • 1974. Lectures in Functional Analysis and Operator Theory in NONE
  • 2020-02-12. Normalizing rings in BANACH JOURNAL OF MATHEMATICAL ANALYSIS
  • 2015. Unit neighborhoods in topological rings in BANACH JOURNAL OF MATHEMATICAL ANALYSIS
  • 1998. An Introduction to Banach Space Theory in NONE
  • 1995. Perturbation Theory for Linear Operators in NONE
  • 2014-03-29. A note on topological divisors of zero and division algebras in REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS, FÍSICAS Y NATURALES. SERIE A. MATEMÁTICAS
  • 2007. Spectral Theory of Linear Operators, and Spectral Systems in Banach Algebras in NONE
  • 2011. Non-commutative Gelfand Theories, A Tool-kit for Operator Theorists and Numerical Analysts in NONE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s13398-021-01183-4

    DOI

    http://dx.doi.org/10.1007/s13398-021-01183-4

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1142599545


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Departamento de Matem\u00e1ticas, Escuela Superior de Ingenier\u00eda, Universidad de C\u00e1diz, 11510, Puerto Real, Spain", 
              "id": "http://www.grid.ac/institutes/grid.7759.c", 
              "name": [
                "Departamento de Matem\u00e1ticas, Escuela Superior de Ingenier\u00eda, Universidad de C\u00e1diz, 11510, Puerto Real, Spain"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Garc\u00eda-Pacheco", 
            "givenName": "Francisco Javier", 
            "id": "sg:person.016046240355.05", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016046240355.05"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "IMAC and Departament de Matem\u00e0tiques, Universitat Jaume I, 12071, Castell\u00f3 de la Plana, Spain", 
              "id": "http://www.grid.ac/institutes/grid.9612.c", 
              "name": [
                "IMAC and Departament de Matem\u00e0tiques, Universitat Jaume I, 12071, Castell\u00f3 de la Plana, Spain"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Miralles", 
            "givenName": "Alejandro", 
            "id": "sg:person.014556720503.09", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014556720503.09"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Instituto Universitario de Matem\u00e1tica Pura y Aplicada, Universitat Polit\u00e8cnica de Val\u00e8ncia, 46022, Val\u00e8ncia, Spain", 
              "id": "http://www.grid.ac/institutes/grid.157927.f", 
              "name": [
                "Instituto Universitario de Matem\u00e1tica Pura y Aplicada, Universitat Polit\u00e8cnica de Val\u00e8ncia, 46022, Val\u00e8ncia, Spain"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Murillo-Arcila", 
            "givenName": "Marina", 
            "id": "sg:person.014325141701.62", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014325141701.62"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/978-3-7643-8265-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008754231", 
              "https://doi.org/10.1007/978-3-7643-8265-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-0-85729-183-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019294674", 
              "https://doi.org/10.1007/978-0-85729-183-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s13398-014-0168-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009893860", 
              "https://doi.org/10.1007/s13398-014-0168-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4757-4090-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1109705759", 
              "https://doi.org/10.1007/978-1-4757-4090-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s43037-020-00055-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1124837451", 
              "https://doi.org/10.1007/s43037-020-00055-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-66282-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016619032", 
              "https://doi.org/10.1007/978-3-642-66282-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.15352/bjma/09-4-12", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1067742105", 
              "https://doi.org/10.15352/bjma/09-4-12"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4612-0603-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053355415", 
              "https://doi.org/10.1007/978-1-4612-0603-3"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2021-11-15", 
        "datePublishedReg": "2021-11-15", 
        "description": "Every element in the boundary of the group of invertibles of a Banach algebra is a topological zero divisor. We extend this result to the scope of topological rings. In particular, we define a new class of semi-normed rings, called almost absolutely semi-normed rings, which strictly includes the class of absolutely semi-valued rings, and prove that every element in the boundary of the group of invertibles of a complete almost absolutely semi-normed ring is a topological zero divisor. To achieve all these, we have to previously entail an exhaustive study of topological divisors of zero in topological rings. In addition, it is also well known that the group of invertibles is open and the inversion map is continuous and C\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\mathbb {C}$$\\end{document}-differentiable in a Banach algebra. We also extend these results to the setting of complete normed rings. Finally, this study allows us to generalize the point, continuous and residual spectra to the scope of Banach algebras.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s13398-021-01183-4", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1136515", 
            "issn": [
              "1578-7303", 
              "1579-1505"
            ], 
            "name": "Revista de la Real Academia de Ciencias Exactas, F\u00edsicas y Naturales. Serie A. Matem\u00e1ticas", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "116"
          }
        ], 
        "keywords": [
          "group of invertibles", 
          "Banach algebra", 
          "topological ring", 
          "topological divisors", 
          "normed rings", 
          "algebra", 
          "invertibles", 
          "divisors", 
          "inversion map", 
          "new class", 
          "new approach", 
          "class", 
          "residual spectrum", 
          "exhaustive study", 
          "boundaries", 
          "ring", 
          "point", 
          "results", 
          "approach", 
          "elements", 
          "spectra", 
          "maps", 
          "scope", 
          "addition", 
          "setting", 
          "study", 
          "group"
        ], 
        "name": "Invertibles in topological rings: a new approach", 
        "pagination": "38", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1142599545"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s13398-021-01183-4"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s13398-021-01183-4", 
          "https://app.dimensions.ai/details/publication/pub.1142599545"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-05-20T07:37", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_889.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s13398-021-01183-4"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s13398-021-01183-4'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s13398-021-01183-4'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s13398-021-01183-4'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s13398-021-01183-4'


     

    This table displays all metadata directly associated to this object as RDF triples.

    137 TRIPLES      22 PREDICATES      60 URIs      44 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s13398-021-01183-4 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author N19bd9983a7454b56a708f67437cb33da
    4 schema:citation sg:pub.10.1007/978-0-85729-183-7
    5 sg:pub.10.1007/978-1-4612-0603-3
    6 sg:pub.10.1007/978-1-4757-4090-5
    7 sg:pub.10.1007/978-3-642-66282-9
    8 sg:pub.10.1007/978-3-7643-8265-0
    9 sg:pub.10.1007/s13398-014-0168-4
    10 sg:pub.10.1007/s43037-020-00055-0
    11 sg:pub.10.15352/bjma/09-4-12
    12 schema:datePublished 2021-11-15
    13 schema:datePublishedReg 2021-11-15
    14 schema:description Every element in the boundary of the group of invertibles of a Banach algebra is a topological zero divisor. We extend this result to the scope of topological rings. In particular, we define a new class of semi-normed rings, called almost absolutely semi-normed rings, which strictly includes the class of absolutely semi-valued rings, and prove that every element in the boundary of the group of invertibles of a complete almost absolutely semi-normed ring is a topological zero divisor. To achieve all these, we have to previously entail an exhaustive study of topological divisors of zero in topological rings. In addition, it is also well known that the group of invertibles is open and the inversion map is continuous and C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {C}$$\end{document}-differentiable in a Banach algebra. We also extend these results to the setting of complete normed rings. Finally, this study allows us to generalize the point, continuous and residual spectra to the scope of Banach algebras.
    15 schema:genre article
    16 schema:inLanguage en
    17 schema:isAccessibleForFree true
    18 schema:isPartOf N5198f8abbb3443f4bef7d412a6f08fe9
    19 Ne51583860f244c5f96059620a2f9c6d8
    20 sg:journal.1136515
    21 schema:keywords Banach algebra
    22 addition
    23 algebra
    24 approach
    25 boundaries
    26 class
    27 divisors
    28 elements
    29 exhaustive study
    30 group
    31 group of invertibles
    32 inversion map
    33 invertibles
    34 maps
    35 new approach
    36 new class
    37 normed rings
    38 point
    39 residual spectrum
    40 results
    41 ring
    42 scope
    43 setting
    44 spectra
    45 study
    46 topological divisors
    47 topological ring
    48 schema:name Invertibles in topological rings: a new approach
    49 schema:pagination 38
    50 schema:productId N397a8cb715454fe5873dc5ae2d40bf82
    51 N6320ef8b20e740119bc9a92b127c0446
    52 schema:sameAs https://app.dimensions.ai/details/publication/pub.1142599545
    53 https://doi.org/10.1007/s13398-021-01183-4
    54 schema:sdDatePublished 2022-05-20T07:37
    55 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    56 schema:sdPublisher Nda8ca095efbf4e0195122fd0256be06b
    57 schema:url https://doi.org/10.1007/s13398-021-01183-4
    58 sgo:license sg:explorer/license/
    59 sgo:sdDataset articles
    60 rdf:type schema:ScholarlyArticle
    61 N19bd9983a7454b56a708f67437cb33da rdf:first sg:person.016046240355.05
    62 rdf:rest Nb3ba990bfd4840848b187436868ac593
    63 N397a8cb715454fe5873dc5ae2d40bf82 schema:name dimensions_id
    64 schema:value pub.1142599545
    65 rdf:type schema:PropertyValue
    66 N5198f8abbb3443f4bef7d412a6f08fe9 schema:volumeNumber 116
    67 rdf:type schema:PublicationVolume
    68 N6320ef8b20e740119bc9a92b127c0446 schema:name doi
    69 schema:value 10.1007/s13398-021-01183-4
    70 rdf:type schema:PropertyValue
    71 N72b42cc35afe49d6b8b296cb1968930d rdf:first sg:person.014325141701.62
    72 rdf:rest rdf:nil
    73 Nb3ba990bfd4840848b187436868ac593 rdf:first sg:person.014556720503.09
    74 rdf:rest N72b42cc35afe49d6b8b296cb1968930d
    75 Nda8ca095efbf4e0195122fd0256be06b schema:name Springer Nature - SN SciGraph project
    76 rdf:type schema:Organization
    77 Ne51583860f244c5f96059620a2f9c6d8 schema:issueNumber 1
    78 rdf:type schema:PublicationIssue
    79 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    80 schema:name Mathematical Sciences
    81 rdf:type schema:DefinedTerm
    82 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    83 schema:name Pure Mathematics
    84 rdf:type schema:DefinedTerm
    85 sg:journal.1136515 schema:issn 1578-7303
    86 1579-1505
    87 schema:name Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas
    88 schema:publisher Springer Nature
    89 rdf:type schema:Periodical
    90 sg:person.014325141701.62 schema:affiliation grid-institutes:grid.157927.f
    91 schema:familyName Murillo-Arcila
    92 schema:givenName Marina
    93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014325141701.62
    94 rdf:type schema:Person
    95 sg:person.014556720503.09 schema:affiliation grid-institutes:grid.9612.c
    96 schema:familyName Miralles
    97 schema:givenName Alejandro
    98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014556720503.09
    99 rdf:type schema:Person
    100 sg:person.016046240355.05 schema:affiliation grid-institutes:grid.7759.c
    101 schema:familyName García-Pacheco
    102 schema:givenName Francisco Javier
    103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016046240355.05
    104 rdf:type schema:Person
    105 sg:pub.10.1007/978-0-85729-183-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019294674
    106 https://doi.org/10.1007/978-0-85729-183-7
    107 rdf:type schema:CreativeWork
    108 sg:pub.10.1007/978-1-4612-0603-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053355415
    109 https://doi.org/10.1007/978-1-4612-0603-3
    110 rdf:type schema:CreativeWork
    111 sg:pub.10.1007/978-1-4757-4090-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109705759
    112 https://doi.org/10.1007/978-1-4757-4090-5
    113 rdf:type schema:CreativeWork
    114 sg:pub.10.1007/978-3-642-66282-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016619032
    115 https://doi.org/10.1007/978-3-642-66282-9
    116 rdf:type schema:CreativeWork
    117 sg:pub.10.1007/978-3-7643-8265-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008754231
    118 https://doi.org/10.1007/978-3-7643-8265-0
    119 rdf:type schema:CreativeWork
    120 sg:pub.10.1007/s13398-014-0168-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009893860
    121 https://doi.org/10.1007/s13398-014-0168-4
    122 rdf:type schema:CreativeWork
    123 sg:pub.10.1007/s43037-020-00055-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1124837451
    124 https://doi.org/10.1007/s43037-020-00055-0
    125 rdf:type schema:CreativeWork
    126 sg:pub.10.15352/bjma/09-4-12 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067742105
    127 https://doi.org/10.15352/bjma/09-4-12
    128 rdf:type schema:CreativeWork
    129 grid-institutes:grid.157927.f schema:alternateName Instituto Universitario de Matemática Pura y Aplicada, Universitat Politècnica de València, 46022, València, Spain
    130 schema:name Instituto Universitario de Matemática Pura y Aplicada, Universitat Politècnica de València, 46022, València, Spain
    131 rdf:type schema:Organization
    132 grid-institutes:grid.7759.c schema:alternateName Departamento de Matemáticas, Escuela Superior de Ingeniería, Universidad de Cádiz, 11510, Puerto Real, Spain
    133 schema:name Departamento de Matemáticas, Escuela Superior de Ingeniería, Universidad de Cádiz, 11510, Puerto Real, Spain
    134 rdf:type schema:Organization
    135 grid-institutes:grid.9612.c schema:alternateName IMAC and Departament de Matemàtiques, Universitat Jaume I, 12071, Castelló de la Plana, Spain
    136 schema:name IMAC and Departament de Matemàtiques, Universitat Jaume I, 12071, Castelló de la Plana, Spain
    137 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...