Ontology type: schema:ScholarlyArticle Open Access: True
2021-11-09
AUTHORS ABSTRACTWe discuss various aspects of a local-to-global embedding technique and the metric geometry of stable metric spaces, in particular two of its important subclasses: locally finite spaces and proper spaces. We explain how the barycentric gluing technique, which has been mostly applied to bi-Lipschitz embedding problems pertaining to locally finite spaces, can be implemented successfully in a much broader context. For instance, we show that the embeddability of an arbitrary metric space into ℓp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _p$$\end{document} is determined by the embeddability of its balls. We also introduce the notion of upper stability. This new metric invariant lies formally between Krivine–Maurey (isometric) notion of stability and Kalton’s property Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {Q}}$$\end{document}. We show that several results of Raynaud and Kalton for stable metrics can be extended to the broader context of upper stable metrics and we point out the relevance of upper stability to a long standing embedding problem raised by Kalton. Applications to compression exponent theory are highlighted and we recall old, and state new, important open problems. This article was written in a style favoring clarity over conciseness in order to make the material appealing, accessible, and reusable to geometers from a variety of backgrounds, and not only to Banach space geometers. More... »
PAGES37
Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas
ISSUE1
VOLUME116
http://scigraph.springernature.com/pub.10.1007/s13398-021-01179-0
DOIhttp://dx.doi.org/10.1007/s13398-021-01179-0
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1142493757
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Pure Mathematics",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Department of Mathematics, Texas A&M University, 77843, College Station, TX, USA",
"id": "http://www.grid.ac/institutes/grid.264756.4",
"name": [
"Department of Mathematics, Texas A&M University, 77843, College Station, TX, USA"
],
"type": "Organization"
},
"familyName": "Baudier",
"givenName": "F. P.",
"id": "sg:person.07501236637.09",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07501236637.09"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/978-3-0346-0422-2_5",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1005045835",
"https://doi.org/10.1007/978-3-0346-0422-2_5"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s002229900032",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1029328185",
"https://doi.org/10.1007/s002229900032"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf01078599",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1016416020",
"https://doi.org/10.1007/bf01078599"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf02760853",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1030621023",
"https://doi.org/10.1007/bf02760853"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bfb0093223",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1024627626",
"https://doi.org/10.1007/bfb0093223"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00013-007-2108-4",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1003006969",
"https://doi.org/10.1007/s00013-007-2108-4"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf02761674",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1018776027",
"https://doi.org/10.1007/bf02761674"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-1-4613-0039-7",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1012714722",
"https://doi.org/10.1007/978-1-4613-0039-7"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf02766125",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1045177033",
"https://doi.org/10.1007/bf02766125"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf01474158",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1020196380",
"https://doi.org/10.1007/bf01474158"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00039-008-0689-0",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1041815522",
"https://doi.org/10.1007/s00039-008-0689-0"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf02760825",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1023144447",
"https://doi.org/10.1007/bf02760825"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00208-007-0190-3",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1035204551",
"https://doi.org/10.1007/s00208-007-0190-3"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bfb0078146",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1028893807",
"https://doi.org/10.1007/bfb0078146"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10240-013-0053-2",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1031750883",
"https://doi.org/10.1007/s10240-013-0053-2"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s11856-019-1862-x",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1113834274",
"https://doi.org/10.1007/s11856-019-1862-x"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s11537-012-1222-7",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1043034399",
"https://doi.org/10.1007/s11537-012-1222-7"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf02757727",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1045470386",
"https://doi.org/10.1007/bf02757727"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00222-019-00878-1",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1113283263",
"https://doi.org/10.1007/s00222-019-00878-1"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf02589550",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1049309304",
"https://doi.org/10.1007/bf02589550"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf02763170",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1040338963",
"https://doi.org/10.1007/bf02763170"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf02761159",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1001143414",
"https://doi.org/10.1007/bf02761159"
],
"type": "CreativeWork"
}
],
"datePublished": "2021-11-09",
"datePublishedReg": "2021-11-09",
"description": "We discuss various aspects of a local-to-global embedding technique and the metric geometry of stable metric spaces, in particular two of its important subclasses: locally finite spaces and proper spaces. We explain how the barycentric gluing technique, which has been mostly applied to bi-Lipschitz embedding problems pertaining to locally finite spaces, can be implemented successfully in a much broader context. For instance, we show that the embeddability of an arbitrary metric space into \u2113p\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\ell _p$$\\end{document} is determined by the embeddability of its balls. We also introduce the notion of upper stability. This new metric invariant lies formally between Krivine\u2013Maurey (isometric) notion of stability and Kalton\u2019s property Q\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$${\\mathcal {Q}}$$\\end{document}. We show that several results of Raynaud and Kalton for stable metrics can be extended to the broader context of upper stable metrics and we point out the relevance of upper stability to a long standing embedding problem raised by Kalton. Applications to compression exponent theory are highlighted and we recall old, and state new, important open problems. This article was written in a style favoring clarity over conciseness in order to make the material appealing, accessible, and reusable to geometers from a variety of backgrounds, and not only to Banach space geometers.",
"genre": "article",
"id": "sg:pub.10.1007/s13398-021-01179-0",
"inLanguage": "en",
"isAccessibleForFree": true,
"isFundedItemOf": [
{
"id": "sg:grant.7508060",
"type": "MonetaryGrant"
}
],
"isPartOf": [
{
"id": "sg:journal.1136515",
"issn": [
"1578-7303",
"1579-1505"
],
"name": "Revista de la Real Academia de Ciencias Exactas, F\u00edsicas y Naturales. Serie A. Matem\u00e1ticas",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "1",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "116"
}
],
"keywords": [
"finite space",
"metric spaces",
"new metric invariant",
"result of Raynaud",
"arbitrary metric spaces",
"important open problem",
"metric geometry",
"stable metric",
"metric invariants",
"upper stability",
"embedding problem",
"important subclass",
"open problem",
"geometers",
"Kalton",
"embeddability",
"space",
"embedding techniques",
"geometry",
"problem",
"Lipschitz",
"proper space",
"invariants",
"metrics",
"theory",
"stability",
"properties",
"notion",
"technique",
"gluing",
"subclasses",
"conciseness",
"applications",
"ball",
"instances",
"order",
"state",
"results",
"variety of backgrounds",
"Raynaud's",
"variety",
"context",
"materials",
"aspects",
"broader context",
"article",
"background",
"relevance",
"clarity",
"style"
],
"name": "Barycentric gluing and geometry of stable metrics",
"pagination": "37",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1142493757"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s13398-021-01179-0"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s13398-021-01179-0",
"https://app.dimensions.ai/details/publication/pub.1142493757"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-20T07:39",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_912.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/s13398-021-01179-0"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s13398-021-01179-0'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s13398-021-01179-0'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s13398-021-01179-0'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s13398-021-01179-0'
This table displays all metadata directly associated to this object as RDF triples.
198 TRIPLES
22 PREDICATES
96 URIs
66 LITERALS
6 BLANK NODES