On the complexity of choosing majorizing sequences for iterative procedures View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-06-30

AUTHORS

Ioannis K. Argyros, Santhosh George

ABSTRACT

The aim of this paper is to introduce general majorizing sequences for iterative procedures which may contain a non-differentiable operator in order to solve nonlinear equations involving Banach valued operators. A general semi-local convergence analysis is presented based on majorizing sequences. The convergence criteria, if specialized can be used to study the convergence of numerous procedures such as Picard’s, Newton’s, Newton-type, Stirling’s, Secant, Secant-type, Steffensen’s, Aitken’s, Kurchatov’s and other procedures. The convergence criteria are flexible enough, so if specialized are weaker than the criteria given by the aforementioned procedures. Moreover, the convergence analysis is at least as tight. Furthermore, these advantages are obtained using Lipschitz constants that are least as tight as the ones already used in the literature. Consequently, no additional hypotheses are needed, since the new constants are special cases of the old constants. These ideas can be used to study, the local convergence, multi-step multi-point procedures along the same lines. Some applications are also provided in this study. More... »

PAGES

1463-1473

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s13398-018-0561-5

DOI

http://dx.doi.org/10.1007/s13398-018-0561-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1105223602


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Mathematical Sciences, Cameron University, 73505, Lawton, OK, USA", 
          "id": "http://www.grid.ac/institutes/grid.253592.a", 
          "name": [
            "Department of Mathematical Sciences, Cameron University, 73505, Lawton, OK, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Argyros", 
        "givenName": "Ioannis K.", 
        "id": "sg:person.015707547201.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015707547201.06"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mathematical and Computational Sciences, NIT Karnataka, 575 025, Mangalore, India", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Department of Mathematical and Computational Sciences, NIT Karnataka, 575 025, Mangalore, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "George", 
        "givenName": "Santhosh", 
        "id": "sg:person.016015532400.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016015532400.41"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2018-06-30", 
    "datePublishedReg": "2018-06-30", 
    "description": "The aim of this paper is to introduce general majorizing sequences for iterative procedures which may contain a non-differentiable operator in order to solve nonlinear equations involving Banach valued operators. A general semi-local convergence analysis is presented based on majorizing sequences. The convergence criteria, if specialized can be used to study the convergence of numerous procedures such as Picard\u2019s, Newton\u2019s, Newton-type, Stirling\u2019s, Secant, Secant-type, Steffensen\u2019s, Aitken\u2019s, Kurchatov\u2019s and other procedures. The convergence criteria are flexible enough, so if specialized are weaker than the criteria given by the aforementioned procedures. Moreover, the convergence analysis is at least as tight. Furthermore, these advantages are obtained using Lipschitz constants that are least as tight as the ones already used in the literature. Consequently, no additional hypotheses are needed, since the new constants are special cases of the old constants. These ideas can be used to study, the local convergence, multi-step multi-point procedures along the same lines. Some applications are also provided in this study.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s13398-018-0561-5", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136515", 
        "issn": [
          "1578-7303", 
          "1579-1505"
        ], 
        "name": "Revista de la Real Academia de Ciencias Exactas, F\u00edsicas y Naturales. Serie A. Matem\u00e1ticas", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "113"
      }
    ], 
    "keywords": [
      "convergence analysis", 
      "non-differentiable operators", 
      "semi-local convergence analysis", 
      "convergence criteria", 
      "iterative procedure", 
      "Newton-type", 
      "nonlinear equations", 
      "majorizing sequences", 
      "Lipschitz constants", 
      "local convergence", 
      "additional hypotheses", 
      "special case", 
      "operators", 
      "convergence", 
      "Banach", 
      "new constants", 
      "Steffensen", 
      "Picard", 
      "equations", 
      "Newton", 
      "secant", 
      "aforementioned procedures", 
      "procedure", 
      "criteria", 
      "same line", 
      "complexity", 
      "idea", 
      "applications", 
      "sequence", 
      "analysis", 
      "advantages", 
      "constants", 
      "one", 
      "Aitken", 
      "Stirling", 
      "order", 
      "cases", 
      "literature", 
      "Kurchatov", 
      "lines", 
      "hypothesis", 
      "aim", 
      "numerous procedures", 
      "study", 
      "paper", 
      "general semi-local convergence analysis", 
      "Secant-type", 
      "old constants", 
      "multi-step multi-point procedures", 
      "multi-point procedures"
    ], 
    "name": "On the complexity of choosing majorizing sequences for iterative procedures", 
    "pagination": "1463-1473", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1105223602"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s13398-018-0561-5"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s13398-018-0561-5", 
      "https://app.dimensions.ai/details/publication/pub.1105223602"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:49", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_776.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s13398-018-0561-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s13398-018-0561-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s13398-018-0561-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s13398-018-0561-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s13398-018-0561-5'


 

This table displays all metadata directly associated to this object as RDF triples.

118 TRIPLES      21 PREDICATES      75 URIs      67 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s13398-018-0561-5 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author Nc7f7e4a81e744ea9969622a1bd358796
4 schema:datePublished 2018-06-30
5 schema:datePublishedReg 2018-06-30
6 schema:description The aim of this paper is to introduce general majorizing sequences for iterative procedures which may contain a non-differentiable operator in order to solve nonlinear equations involving Banach valued operators. A general semi-local convergence analysis is presented based on majorizing sequences. The convergence criteria, if specialized can be used to study the convergence of numerous procedures such as Picard’s, Newton’s, Newton-type, Stirling’s, Secant, Secant-type, Steffensen’s, Aitken’s, Kurchatov’s and other procedures. The convergence criteria are flexible enough, so if specialized are weaker than the criteria given by the aforementioned procedures. Moreover, the convergence analysis is at least as tight. Furthermore, these advantages are obtained using Lipschitz constants that are least as tight as the ones already used in the literature. Consequently, no additional hypotheses are needed, since the new constants are special cases of the old constants. These ideas can be used to study, the local convergence, multi-step multi-point procedures along the same lines. Some applications are also provided in this study.
7 schema:genre article
8 schema:inLanguage en
9 schema:isAccessibleForFree false
10 schema:isPartOf N06d8c6c614064b5a98ccc31394cfe5b5
11 N1e16952ec07649819a472bb745ef934d
12 sg:journal.1136515
13 schema:keywords Aitken
14 Banach
15 Kurchatov
16 Lipschitz constants
17 Newton
18 Newton-type
19 Picard
20 Secant-type
21 Steffensen
22 Stirling
23 additional hypotheses
24 advantages
25 aforementioned procedures
26 aim
27 analysis
28 applications
29 cases
30 complexity
31 constants
32 convergence
33 convergence analysis
34 convergence criteria
35 criteria
36 equations
37 general semi-local convergence analysis
38 hypothesis
39 idea
40 iterative procedure
41 lines
42 literature
43 local convergence
44 majorizing sequences
45 multi-point procedures
46 multi-step multi-point procedures
47 new constants
48 non-differentiable operators
49 nonlinear equations
50 numerous procedures
51 old constants
52 one
53 operators
54 order
55 paper
56 procedure
57 same line
58 secant
59 semi-local convergence analysis
60 sequence
61 special case
62 study
63 schema:name On the complexity of choosing majorizing sequences for iterative procedures
64 schema:pagination 1463-1473
65 schema:productId N1cb4d23df490468d873d156c6f8a0f2d
66 N90050bce2e114008943f16d39802f0fb
67 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105223602
68 https://doi.org/10.1007/s13398-018-0561-5
69 schema:sdDatePublished 2022-01-01T18:49
70 schema:sdLicense https://scigraph.springernature.com/explorer/license/
71 schema:sdPublisher Nb4f4b7f736064608947c0cb4dde0674e
72 schema:url https://doi.org/10.1007/s13398-018-0561-5
73 sgo:license sg:explorer/license/
74 sgo:sdDataset articles
75 rdf:type schema:ScholarlyArticle
76 N06d8c6c614064b5a98ccc31394cfe5b5 schema:issueNumber 2
77 rdf:type schema:PublicationIssue
78 N1cb4d23df490468d873d156c6f8a0f2d schema:name dimensions_id
79 schema:value pub.1105223602
80 rdf:type schema:PropertyValue
81 N1e16952ec07649819a472bb745ef934d schema:volumeNumber 113
82 rdf:type schema:PublicationVolume
83 N85eaf6ed78034fd49139e8fad183ded6 rdf:first sg:person.016015532400.41
84 rdf:rest rdf:nil
85 N90050bce2e114008943f16d39802f0fb schema:name doi
86 schema:value 10.1007/s13398-018-0561-5
87 rdf:type schema:PropertyValue
88 Nb4f4b7f736064608947c0cb4dde0674e schema:name Springer Nature - SN SciGraph project
89 rdf:type schema:Organization
90 Nc7f7e4a81e744ea9969622a1bd358796 rdf:first sg:person.015707547201.06
91 rdf:rest N85eaf6ed78034fd49139e8fad183ded6
92 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
93 schema:name Mathematical Sciences
94 rdf:type schema:DefinedTerm
95 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
96 schema:name Pure Mathematics
97 rdf:type schema:DefinedTerm
98 sg:journal.1136515 schema:issn 1578-7303
99 1579-1505
100 schema:name Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas
101 schema:publisher Springer Nature
102 rdf:type schema:Periodical
103 sg:person.015707547201.06 schema:affiliation grid-institutes:grid.253592.a
104 schema:familyName Argyros
105 schema:givenName Ioannis K.
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015707547201.06
107 rdf:type schema:Person
108 sg:person.016015532400.41 schema:affiliation grid-institutes:None
109 schema:familyName George
110 schema:givenName Santhosh
111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016015532400.41
112 rdf:type schema:Person
113 grid-institutes:None schema:alternateName Department of Mathematical and Computational Sciences, NIT Karnataka, 575 025, Mangalore, India
114 schema:name Department of Mathematical and Computational Sciences, NIT Karnataka, 575 025, Mangalore, India
115 rdf:type schema:Organization
116 grid-institutes:grid.253592.a schema:alternateName Department of Mathematical Sciences, Cameron University, 73505, Lawton, OK, USA
117 schema:name Department of Mathematical Sciences, Cameron University, 73505, Lawton, OK, USA
118 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...