On the complexity of choosing majorizing sequences for iterative procedures View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-06-30

AUTHORS

Ioannis K. Argyros, Santhosh George

ABSTRACT

The aim of this paper is to introduce general majorizing sequences for iterative procedures which may contain a non-differentiable operator in order to solve nonlinear equations involving Banach valued operators. A general semi-local convergence analysis is presented based on majorizing sequences. The convergence criteria, if specialized can be used to study the convergence of numerous procedures such as Picard’s, Newton’s, Newton-type, Stirling’s, Secant, Secant-type, Steffensen’s, Aitken’s, Kurchatov’s and other procedures. The convergence criteria are flexible enough, so if specialized are weaker than the criteria given by the aforementioned procedures. Moreover, the convergence analysis is at least as tight. Furthermore, these advantages are obtained using Lipschitz constants that are least as tight as the ones already used in the literature. Consequently, no additional hypotheses are needed, since the new constants are special cases of the old constants. These ideas can be used to study, the local convergence, multi-step multi-point procedures along the same lines. Some applications are also provided in this study. More... »

PAGES

1463-1473

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s13398-018-0561-5

DOI

http://dx.doi.org/10.1007/s13398-018-0561-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1105223602


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Mathematical Sciences, Cameron University, 73505, Lawton, OK, USA", 
          "id": "http://www.grid.ac/institutes/grid.253592.a", 
          "name": [
            "Department of Mathematical Sciences, Cameron University, 73505, Lawton, OK, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Argyros", 
        "givenName": "Ioannis K.", 
        "id": "sg:person.015707547201.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015707547201.06"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mathematical and Computational Sciences, NIT Karnataka, 575 025, Mangalore, India", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Department of Mathematical and Computational Sciences, NIT Karnataka, 575 025, Mangalore, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "George", 
        "givenName": "Santhosh", 
        "id": "sg:person.016015532400.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016015532400.41"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2018-06-30", 
    "datePublishedReg": "2018-06-30", 
    "description": "The aim of this paper is to introduce general majorizing sequences for iterative procedures which may contain a non-differentiable operator in order to solve nonlinear equations involving Banach valued operators. A general semi-local convergence analysis is presented based on majorizing sequences. The convergence criteria, if specialized can be used to study the convergence of numerous procedures such as Picard\u2019s, Newton\u2019s, Newton-type, Stirling\u2019s, Secant, Secant-type, Steffensen\u2019s, Aitken\u2019s, Kurchatov\u2019s and other procedures. The convergence criteria are flexible enough, so if specialized are weaker than the criteria given by the aforementioned procedures. Moreover, the convergence analysis is at least as tight. Furthermore, these advantages are obtained using Lipschitz constants that are least as tight as the ones already used in the literature. Consequently, no additional hypotheses are needed, since the new constants are special cases of the old constants. These ideas can be used to study, the local convergence, multi-step multi-point procedures along the same lines. Some applications are also provided in this study.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s13398-018-0561-5", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136515", 
        "issn": [
          "1578-7303", 
          "1579-1505"
        ], 
        "name": "Revista de la Real Academia de Ciencias Exactas, F\u00edsicas y Naturales. Serie A. Matem\u00e1ticas", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "113"
      }
    ], 
    "keywords": [
      "convergence analysis", 
      "non-differentiable operators", 
      "semi-local convergence analysis", 
      "convergence criteria", 
      "iterative procedure", 
      "Newton-type", 
      "nonlinear equations", 
      "majorizing sequences", 
      "Lipschitz constants", 
      "local convergence", 
      "additional hypotheses", 
      "special case", 
      "operators", 
      "convergence", 
      "Banach", 
      "new constants", 
      "Steffensen", 
      "Picard", 
      "equations", 
      "Newton", 
      "secant", 
      "aforementioned procedures", 
      "procedure", 
      "criteria", 
      "same line", 
      "complexity", 
      "idea", 
      "applications", 
      "sequence", 
      "analysis", 
      "advantages", 
      "constants", 
      "one", 
      "Aitken", 
      "Stirling", 
      "order", 
      "cases", 
      "literature", 
      "Kurchatov", 
      "lines", 
      "hypothesis", 
      "aim", 
      "numerous procedures", 
      "study", 
      "paper", 
      "general semi-local convergence analysis", 
      "Secant-type", 
      "old constants", 
      "multi-step multi-point procedures", 
      "multi-point procedures"
    ], 
    "name": "On the complexity of choosing majorizing sequences for iterative procedures", 
    "pagination": "1463-1473", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1105223602"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s13398-018-0561-5"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s13398-018-0561-5", 
      "https://app.dimensions.ai/details/publication/pub.1105223602"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-12-01T19:42", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_765.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s13398-018-0561-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s13398-018-0561-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s13398-018-0561-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s13398-018-0561-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s13398-018-0561-5'


 

This table displays all metadata directly associated to this object as RDF triples.

118 TRIPLES      21 PREDICATES      75 URIs      67 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s13398-018-0561-5 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N9d40a31340e0474ca3acbacd9d615dbf
4 schema:datePublished 2018-06-30
5 schema:datePublishedReg 2018-06-30
6 schema:description The aim of this paper is to introduce general majorizing sequences for iterative procedures which may contain a non-differentiable operator in order to solve nonlinear equations involving Banach valued operators. A general semi-local convergence analysis is presented based on majorizing sequences. The convergence criteria, if specialized can be used to study the convergence of numerous procedures such as Picard’s, Newton’s, Newton-type, Stirling’s, Secant, Secant-type, Steffensen’s, Aitken’s, Kurchatov’s and other procedures. The convergence criteria are flexible enough, so if specialized are weaker than the criteria given by the aforementioned procedures. Moreover, the convergence analysis is at least as tight. Furthermore, these advantages are obtained using Lipschitz constants that are least as tight as the ones already used in the literature. Consequently, no additional hypotheses are needed, since the new constants are special cases of the old constants. These ideas can be used to study, the local convergence, multi-step multi-point procedures along the same lines. Some applications are also provided in this study.
7 schema:genre article
8 schema:inLanguage en
9 schema:isAccessibleForFree false
10 schema:isPartOf N20f06c96418244359c986a6a81cb821c
11 Ncc08773b78994e67b15138b651c1c8bf
12 sg:journal.1136515
13 schema:keywords Aitken
14 Banach
15 Kurchatov
16 Lipschitz constants
17 Newton
18 Newton-type
19 Picard
20 Secant-type
21 Steffensen
22 Stirling
23 additional hypotheses
24 advantages
25 aforementioned procedures
26 aim
27 analysis
28 applications
29 cases
30 complexity
31 constants
32 convergence
33 convergence analysis
34 convergence criteria
35 criteria
36 equations
37 general semi-local convergence analysis
38 hypothesis
39 idea
40 iterative procedure
41 lines
42 literature
43 local convergence
44 majorizing sequences
45 multi-point procedures
46 multi-step multi-point procedures
47 new constants
48 non-differentiable operators
49 nonlinear equations
50 numerous procedures
51 old constants
52 one
53 operators
54 order
55 paper
56 procedure
57 same line
58 secant
59 semi-local convergence analysis
60 sequence
61 special case
62 study
63 schema:name On the complexity of choosing majorizing sequences for iterative procedures
64 schema:pagination 1463-1473
65 schema:productId N10e3f3f0af614f3db68e6871decde1da
66 N9ea5f4e5835b4e0ea03d6fb6ed59d3d6
67 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105223602
68 https://doi.org/10.1007/s13398-018-0561-5
69 schema:sdDatePublished 2021-12-01T19:42
70 schema:sdLicense https://scigraph.springernature.com/explorer/license/
71 schema:sdPublisher N899c36f3879743c8bb6db892ddcbfb07
72 schema:url https://doi.org/10.1007/s13398-018-0561-5
73 sgo:license sg:explorer/license/
74 sgo:sdDataset articles
75 rdf:type schema:ScholarlyArticle
76 N10e3f3f0af614f3db68e6871decde1da schema:name dimensions_id
77 schema:value pub.1105223602
78 rdf:type schema:PropertyValue
79 N20f06c96418244359c986a6a81cb821c schema:issueNumber 2
80 rdf:type schema:PublicationIssue
81 N899c36f3879743c8bb6db892ddcbfb07 schema:name Springer Nature - SN SciGraph project
82 rdf:type schema:Organization
83 N9d40a31340e0474ca3acbacd9d615dbf rdf:first sg:person.015707547201.06
84 rdf:rest Nafecbdc474c94e028dd663e78cc5bce9
85 N9ea5f4e5835b4e0ea03d6fb6ed59d3d6 schema:name doi
86 schema:value 10.1007/s13398-018-0561-5
87 rdf:type schema:PropertyValue
88 Nafecbdc474c94e028dd663e78cc5bce9 rdf:first sg:person.016015532400.41
89 rdf:rest rdf:nil
90 Ncc08773b78994e67b15138b651c1c8bf schema:volumeNumber 113
91 rdf:type schema:PublicationVolume
92 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
93 schema:name Mathematical Sciences
94 rdf:type schema:DefinedTerm
95 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
96 schema:name Pure Mathematics
97 rdf:type schema:DefinedTerm
98 sg:journal.1136515 schema:issn 1578-7303
99 1579-1505
100 schema:name Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas
101 schema:publisher Springer Nature
102 rdf:type schema:Periodical
103 sg:person.015707547201.06 schema:affiliation grid-institutes:grid.253592.a
104 schema:familyName Argyros
105 schema:givenName Ioannis K.
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015707547201.06
107 rdf:type schema:Person
108 sg:person.016015532400.41 schema:affiliation grid-institutes:None
109 schema:familyName George
110 schema:givenName Santhosh
111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016015532400.41
112 rdf:type schema:Person
113 grid-institutes:None schema:alternateName Department of Mathematical and Computational Sciences, NIT Karnataka, 575 025, Mangalore, India
114 schema:name Department of Mathematical and Computational Sciences, NIT Karnataka, 575 025, Mangalore, India
115 rdf:type schema:Organization
116 grid-institutes:grid.253592.a schema:alternateName Department of Mathematical Sciences, Cameron University, 73505, Lawton, OK, USA
117 schema:name Department of Mathematical Sciences, Cameron University, 73505, Lawton, OK, USA
118 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...