On the feasibility of deriving cryptographic keys from MEMS sensors View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-04-02

AUTHORS

Oliver Willers, Christopher Huth, Jorge Guajardo, Helmut Seidel, Peter Deutsch

ABSTRACT

One of the main challenges in the internet of things (IoT) will be to guarantee the security of products and services enabled by it. A fundamental assumption in any cryptosystem is that secret-key material remains securely stored and unknown to attackers. To this end, physical unclonable functions have been proposed to store cryptographic secrets without the need to use non-volatile memory. In this work, we show that microelectromechanical systems (MEMS) sensors, ubiquitous in the IoT, can be used to generate a stable nearly fully entropic bit string that can be used as a secret or private key in a cryptographic algorithm. We provide experimental evidence of the stability of our methods by analyzing data from 468 off-the-shelf 3-axis MEMS gyroscopes subjected to different temperatures in the range typically required for consumer applications and standardized aging tests. The investigations are carried out on module level so that packaging influences are considered. We derive unique fingerprints from the sensors based on their characteristics, and we show that the false rejection rate (FRR) and the false acceptance rate (FAR) are below 1×10-6 for all applied test conditions. By adding up the values of FRR and the FAR, the highest probability for an authentication error is 4.1×10-6. Furthermore, we extract stable keys from the fingerprints. The extracted key length lies in a range between 27 and 150 bits depending on the applied test conditions and the used entropy estimation method. More... »

PAGES

1-17

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s13389-019-00208-4

DOI

http://dx.doi.org/10.1007/s13389-019-00208-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1113199942


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0906", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Electrical and Electronic Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Robert Bosch (Germany)", 
          "id": "https://www.grid.ac/institutes/grid.6584.f", 
          "name": [
            "Department Research and Advance Engineering, Robert Bosch GmbH, Stuttgart, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Willers", 
        "givenName": "Oliver", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Robert Bosch (Germany)", 
          "id": "https://www.grid.ac/institutes/grid.6584.f", 
          "name": [
            "Department Research and Advance Engineering, Robert Bosch GmbH, Stuttgart, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Huth", 
        "givenName": "Christopher", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Robert Bosch (United States)", 
          "id": "https://www.grid.ac/institutes/grid.420831.c", 
          "name": [
            "Research and Technology Center, Robert Bosch LLC, Pittsburgh, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Guajardo", 
        "givenName": "Jorge", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Saarland University", 
          "id": "https://www.grid.ac/institutes/grid.11749.3a", 
          "name": [
            "Chair of Micromechanics, Microfluidics/Microactuators, Saarland University, Saarbr\u00fccken, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Seidel", 
        "givenName": "Helmut", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Robert Bosch (Germany)", 
          "id": "https://www.grid.ac/institutes/grid.6584.f", 
          "name": [
            "Department Research and Advance Engineering, Robert Bosch GmbH, Stuttgart, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Deutsch", 
        "givenName": "Peter", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1145/1278480.1278484", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005105095"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-48324-4_28", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005486757", 
          "https://doi.org/10.1007/978-3-662-48324-4_28"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/11894063_29", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005869106", 
          "https://doi.org/10.1007/11894063_29"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/11894063_29", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005869106", 
          "https://doi.org/10.1007/11894063_29"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-41395-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006418303", 
          "https://doi.org/10.1007/978-3-642-41395-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-41395-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006418303", 
          "https://doi.org/10.1007/978-3-642-41395-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/586110.586132", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008003460"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s13389-016-0125-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009255279", 
          "https://doi.org/10.1007/s13389-016-0125-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-14623-7_34", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012218885", 
          "https://doi.org/10.1007/978-3-642-14623-7_34"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-14623-7_34", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012218885", 
          "https://doi.org/10.1007/978-3-642-14623-7_34"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2976749.2978295", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020738638"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2810103.2813670", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021712289"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-36594-2_1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024634086", 
          "https://doi.org/10.1007/978-3-642-36594-2_1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2744769.2744922", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024712606"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2527317.2527319", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025030476"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-44887-x_47", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027326246", 
          "https://doi.org/10.1007/3-540-44887-x_47"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/11545262_25", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027735271", 
          "https://doi.org/10.1007/11545262_25"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/11545262_25", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027735271", 
          "https://doi.org/10.1007/11545262_25"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/168588.168596", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032246154"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.sna.2006.11.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034571976"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/11818175_14", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034589600", 
          "https://doi.org/10.1007/11818175_14"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/11818175_14", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034589600", 
          "https://doi.org/10.1007/11818175_14"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-28628-8_30", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036339578", 
          "https://doi.org/10.1007/978-3-540-28628-8_30"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-28628-8_30", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036339578", 
          "https://doi.org/10.1007/978-3-540-28628-8_30"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-24676-3_31", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040263189", 
          "https://doi.org/10.1007/978-3-540-24676-3_31"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-24676-3_31", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040263189", 
          "https://doi.org/10.1007/978-3-540-24676-3_31"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-53140-2_20", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042734578", 
          "https://doi.org/10.1007/978-3-662-53140-2_20"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jcss.1996.0004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045302559"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1866307.1866335", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046822949"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/11426639_9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047382454", 
          "https://doi.org/10.1007/11426639_9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/11426639_9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047382454", 
          "https://doi.org/10.1007/11426639_9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-33027-8_17", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047405385", 
          "https://doi.org/10.1007/978-3-642-33027-8_17"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-0000(79)90044-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049707404"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1117/12.478201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050512506"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1050763275", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4614-5040-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050763275", 
          "https://doi.org/10.1007/978-1-4614-5040-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4614-5040-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050763275", 
          "https://doi.org/10.1007/978-1-4614-5040-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-74735-2_5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053541019", 
          "https://doi.org/10.1007/978-3-540-74735-2_5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-33027-8_18", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053599668", 
          "https://doi.org/10.1007/978-3-642-33027-8_18"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/18.382012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061099556"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/18.532891", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061100029"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/jmems.2012.2189356", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061291176"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tc.2008.212", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061534626"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/060651380", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062849070"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/s0097539793244708", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062879807"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/aoms/1177705799", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064400795"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s13389-017-0159-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084037110", 
          "https://doi.org/10.1007/s13389-017-0159-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s13389-017-0159-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084037110", 
          "https://doi.org/10.1007/s13389-017-0159-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iccad.2008.4681648", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093388681"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/btas.2007.4401912", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093631517"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/vlsic.2004.1346548", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093979399"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/freq.2007.4319247", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094064539"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/hst.2013.6581556", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094213876"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/fpl.2007.4380646", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094601494"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icsens.2005.1597752", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095095106"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/fdtc.2013.19", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095405435"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/fdtc.2013.19", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095405435"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/isit.2006.261765", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095809980"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1109700955", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1109700955", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/0471790281", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109700955"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/0471790281", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109700955"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-04-02", 
    "datePublishedReg": "2019-04-02", 
    "description": "One of the main challenges in the internet of things (IoT) will be to guarantee the security of products and services enabled by it. A fundamental assumption in any cryptosystem is that secret-key material remains securely stored and unknown to attackers. To this end, physical unclonable functions have been proposed to store cryptographic secrets without the need to use non-volatile memory. In this work, we show that microelectromechanical systems (MEMS) sensors, ubiquitous in the IoT, can be used to generate a stable nearly fully entropic bit string that can be used as a secret or private key in a cryptographic algorithm. We provide experimental evidence of the stability of our methods by analyzing data from 468 off-the-shelf 3-axis MEMS gyroscopes subjected to different temperatures in the range typically required for consumer applications and standardized aging tests. The investigations are carried out on module level so that packaging influences are considered. We derive unique fingerprints from the sensors based on their characteristics, and we show that the false rejection rate (FRR) and the false acceptance rate (FAR) are below 1\u00d710-6 for all applied test conditions. By adding up the values of FRR and the FAR, the highest probability for an authentication error is 4.1\u00d710-6. Furthermore, we extract stable keys from the fingerprints. The extracted key length lies in a range between 27 and 150 bits depending on the applied test conditions and the used entropy estimation method.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s13389-019-00208-4", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136625", 
        "issn": [
          "2190-8508", 
          "2190-8516"
        ], 
        "name": "Journal of Cryptographic Engineering", 
        "type": "Periodical"
      }
    ], 
    "name": "On the feasibility of deriving cryptographic keys from MEMS sensors", 
    "pagination": "1-17", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s13389-019-00208-4"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "29642190f7b59f7feb2b2f3dffd17b3e2409741669106bbb85a78e4bd03b9bd8"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1113199942"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s13389-019-00208-4", 
      "https://app.dimensions.ai/details/publication/pub.1113199942"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-15T09:20", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000376_0000000376/records_56179_00000006.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs13389-019-00208-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s13389-019-00208-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s13389-019-00208-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s13389-019-00208-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s13389-019-00208-4'


 

This table displays all metadata directly associated to this object as RDF triples.

247 TRIPLES      21 PREDICATES      73 URIs      16 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s13389-019-00208-4 schema:about anzsrc-for:09
2 anzsrc-for:0906
3 schema:author Ne01b130e9f6f4ca892df656f8e894d40
4 schema:citation sg:pub.10.1007/11426639_9
5 sg:pub.10.1007/11545262_25
6 sg:pub.10.1007/11818175_14
7 sg:pub.10.1007/11894063_29
8 sg:pub.10.1007/3-540-44887-x_47
9 sg:pub.10.1007/978-1-4614-5040-5
10 sg:pub.10.1007/978-3-540-24676-3_31
11 sg:pub.10.1007/978-3-540-28628-8_30
12 sg:pub.10.1007/978-3-540-74735-2_5
13 sg:pub.10.1007/978-3-642-14623-7_34
14 sg:pub.10.1007/978-3-642-33027-8_17
15 sg:pub.10.1007/978-3-642-33027-8_18
16 sg:pub.10.1007/978-3-642-36594-2_1
17 sg:pub.10.1007/978-3-642-41395-7
18 sg:pub.10.1007/978-3-662-48324-4_28
19 sg:pub.10.1007/978-3-662-53140-2_20
20 sg:pub.10.1007/s13389-016-0125-6
21 sg:pub.10.1007/s13389-017-0159-4
22 https://app.dimensions.ai/details/publication/pub.1050763275
23 https://app.dimensions.ai/details/publication/pub.1109700955
24 https://doi.org/10.1002/0471790281
25 https://doi.org/10.1006/jcss.1996.0004
26 https://doi.org/10.1016/0022-0000(79)90044-8
27 https://doi.org/10.1016/j.sna.2006.11.006
28 https://doi.org/10.1109/18.382012
29 https://doi.org/10.1109/18.532891
30 https://doi.org/10.1109/btas.2007.4401912
31 https://doi.org/10.1109/fdtc.2013.19
32 https://doi.org/10.1109/fpl.2007.4380646
33 https://doi.org/10.1109/freq.2007.4319247
34 https://doi.org/10.1109/hst.2013.6581556
35 https://doi.org/10.1109/iccad.2008.4681648
36 https://doi.org/10.1109/icsens.2005.1597752
37 https://doi.org/10.1109/isit.2006.261765
38 https://doi.org/10.1109/jmems.2012.2189356
39 https://doi.org/10.1109/tc.2008.212
40 https://doi.org/10.1109/vlsic.2004.1346548
41 https://doi.org/10.1117/12.478201
42 https://doi.org/10.1137/060651380
43 https://doi.org/10.1137/s0097539793244708
44 https://doi.org/10.1145/1278480.1278484
45 https://doi.org/10.1145/168588.168596
46 https://doi.org/10.1145/1866307.1866335
47 https://doi.org/10.1145/2527317.2527319
48 https://doi.org/10.1145/2744769.2744922
49 https://doi.org/10.1145/2810103.2813670
50 https://doi.org/10.1145/2976749.2978295
51 https://doi.org/10.1145/586110.586132
52 https://doi.org/10.1214/aoms/1177705799
53 schema:datePublished 2019-04-02
54 schema:datePublishedReg 2019-04-02
55 schema:description One of the main challenges in the internet of things (IoT) will be to guarantee the security of products and services enabled by it. A fundamental assumption in any cryptosystem is that secret-key material remains securely stored and unknown to attackers. To this end, physical unclonable functions have been proposed to store cryptographic secrets without the need to use non-volatile memory. In this work, we show that microelectromechanical systems (MEMS) sensors, ubiquitous in the IoT, can be used to generate a stable nearly fully entropic bit string that can be used as a secret or private key in a cryptographic algorithm. We provide experimental evidence of the stability of our methods by analyzing data from 468 off-the-shelf 3-axis MEMS gyroscopes subjected to different temperatures in the range typically required for consumer applications and standardized aging tests. The investigations are carried out on module level so that packaging influences are considered. We derive unique fingerprints from the sensors based on their characteristics, and we show that the false rejection rate (FRR) and the false acceptance rate (FAR) are below 1×10-6 for all applied test conditions. By adding up the values of FRR and the FAR, the highest probability for an authentication error is 4.1×10-6. Furthermore, we extract stable keys from the fingerprints. The extracted key length lies in a range between 27 and 150 bits depending on the applied test conditions and the used entropy estimation method.
56 schema:genre research_article
57 schema:inLanguage en
58 schema:isAccessibleForFree false
59 schema:isPartOf sg:journal.1136625
60 schema:name On the feasibility of deriving cryptographic keys from MEMS sensors
61 schema:pagination 1-17
62 schema:productId N1c467ca3b5dc4f199728c09694c9419f
63 N545a9ef12c634f7e8542a15e1c5a57d5
64 Nc0c4b0f8f1984d2d8255a06444cefbf7
65 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113199942
66 https://doi.org/10.1007/s13389-019-00208-4
67 schema:sdDatePublished 2019-04-15T09:20
68 schema:sdLicense https://scigraph.springernature.com/explorer/license/
69 schema:sdPublisher N8bc793620e3f41748e629da19b208af3
70 schema:url https://link.springer.com/10.1007%2Fs13389-019-00208-4
71 sgo:license sg:explorer/license/
72 sgo:sdDataset articles
73 rdf:type schema:ScholarlyArticle
74 N122520e8d600485290120f58d1072d30 rdf:first Ndaadbb2528c342b483cc2278eeb6683a
75 rdf:rest rdf:nil
76 N1c467ca3b5dc4f199728c09694c9419f schema:name doi
77 schema:value 10.1007/s13389-019-00208-4
78 rdf:type schema:PropertyValue
79 N27f07c3919ed4682af0e6f89d480fe67 schema:affiliation https://www.grid.ac/institutes/grid.420831.c
80 schema:familyName Guajardo
81 schema:givenName Jorge
82 rdf:type schema:Person
83 N331c9708e2214639a9482d12f69262fd rdf:first N6b156b7cf45745b3badcc8e03c2fd1f2
84 rdf:rest N122520e8d600485290120f58d1072d30
85 N4613dd4e5a3046ac9597f8456cd95797 rdf:first N71854b44c83f4852b92e5ae6e1a347f6
86 rdf:rest Ne22ddbb9aeb5497b8b7d501f8084f9ae
87 N545a9ef12c634f7e8542a15e1c5a57d5 schema:name dimensions_id
88 schema:value pub.1113199942
89 rdf:type schema:PropertyValue
90 N6b156b7cf45745b3badcc8e03c2fd1f2 schema:affiliation https://www.grid.ac/institutes/grid.11749.3a
91 schema:familyName Seidel
92 schema:givenName Helmut
93 rdf:type schema:Person
94 N71854b44c83f4852b92e5ae6e1a347f6 schema:affiliation https://www.grid.ac/institutes/grid.6584.f
95 schema:familyName Huth
96 schema:givenName Christopher
97 rdf:type schema:Person
98 N8bc793620e3f41748e629da19b208af3 schema:name Springer Nature - SN SciGraph project
99 rdf:type schema:Organization
100 Nba5f44de198e42068b9d211c1318921d schema:affiliation https://www.grid.ac/institutes/grid.6584.f
101 schema:familyName Willers
102 schema:givenName Oliver
103 rdf:type schema:Person
104 Nc0c4b0f8f1984d2d8255a06444cefbf7 schema:name readcube_id
105 schema:value 29642190f7b59f7feb2b2f3dffd17b3e2409741669106bbb85a78e4bd03b9bd8
106 rdf:type schema:PropertyValue
107 Ndaadbb2528c342b483cc2278eeb6683a schema:affiliation https://www.grid.ac/institutes/grid.6584.f
108 schema:familyName Deutsch
109 schema:givenName Peter
110 rdf:type schema:Person
111 Ne01b130e9f6f4ca892df656f8e894d40 rdf:first Nba5f44de198e42068b9d211c1318921d
112 rdf:rest N4613dd4e5a3046ac9597f8456cd95797
113 Ne22ddbb9aeb5497b8b7d501f8084f9ae rdf:first N27f07c3919ed4682af0e6f89d480fe67
114 rdf:rest N331c9708e2214639a9482d12f69262fd
115 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
116 schema:name Engineering
117 rdf:type schema:DefinedTerm
118 anzsrc-for:0906 schema:inDefinedTermSet anzsrc-for:
119 schema:name Electrical and Electronic Engineering
120 rdf:type schema:DefinedTerm
121 sg:journal.1136625 schema:issn 2190-8508
122 2190-8516
123 schema:name Journal of Cryptographic Engineering
124 rdf:type schema:Periodical
125 sg:pub.10.1007/11426639_9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047382454
126 https://doi.org/10.1007/11426639_9
127 rdf:type schema:CreativeWork
128 sg:pub.10.1007/11545262_25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027735271
129 https://doi.org/10.1007/11545262_25
130 rdf:type schema:CreativeWork
131 sg:pub.10.1007/11818175_14 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034589600
132 https://doi.org/10.1007/11818175_14
133 rdf:type schema:CreativeWork
134 sg:pub.10.1007/11894063_29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005869106
135 https://doi.org/10.1007/11894063_29
136 rdf:type schema:CreativeWork
137 sg:pub.10.1007/3-540-44887-x_47 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027326246
138 https://doi.org/10.1007/3-540-44887-x_47
139 rdf:type schema:CreativeWork
140 sg:pub.10.1007/978-1-4614-5040-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050763275
141 https://doi.org/10.1007/978-1-4614-5040-5
142 rdf:type schema:CreativeWork
143 sg:pub.10.1007/978-3-540-24676-3_31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040263189
144 https://doi.org/10.1007/978-3-540-24676-3_31
145 rdf:type schema:CreativeWork
146 sg:pub.10.1007/978-3-540-28628-8_30 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036339578
147 https://doi.org/10.1007/978-3-540-28628-8_30
148 rdf:type schema:CreativeWork
149 sg:pub.10.1007/978-3-540-74735-2_5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053541019
150 https://doi.org/10.1007/978-3-540-74735-2_5
151 rdf:type schema:CreativeWork
152 sg:pub.10.1007/978-3-642-14623-7_34 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012218885
153 https://doi.org/10.1007/978-3-642-14623-7_34
154 rdf:type schema:CreativeWork
155 sg:pub.10.1007/978-3-642-33027-8_17 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047405385
156 https://doi.org/10.1007/978-3-642-33027-8_17
157 rdf:type schema:CreativeWork
158 sg:pub.10.1007/978-3-642-33027-8_18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053599668
159 https://doi.org/10.1007/978-3-642-33027-8_18
160 rdf:type schema:CreativeWork
161 sg:pub.10.1007/978-3-642-36594-2_1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024634086
162 https://doi.org/10.1007/978-3-642-36594-2_1
163 rdf:type schema:CreativeWork
164 sg:pub.10.1007/978-3-642-41395-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006418303
165 https://doi.org/10.1007/978-3-642-41395-7
166 rdf:type schema:CreativeWork
167 sg:pub.10.1007/978-3-662-48324-4_28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005486757
168 https://doi.org/10.1007/978-3-662-48324-4_28
169 rdf:type schema:CreativeWork
170 sg:pub.10.1007/978-3-662-53140-2_20 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042734578
171 https://doi.org/10.1007/978-3-662-53140-2_20
172 rdf:type schema:CreativeWork
173 sg:pub.10.1007/s13389-016-0125-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009255279
174 https://doi.org/10.1007/s13389-016-0125-6
175 rdf:type schema:CreativeWork
176 sg:pub.10.1007/s13389-017-0159-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084037110
177 https://doi.org/10.1007/s13389-017-0159-4
178 rdf:type schema:CreativeWork
179 https://app.dimensions.ai/details/publication/pub.1050763275 schema:CreativeWork
180 https://app.dimensions.ai/details/publication/pub.1109700955 schema:CreativeWork
181 https://doi.org/10.1002/0471790281 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109700955
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1006/jcss.1996.0004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045302559
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1016/0022-0000(79)90044-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049707404
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1016/j.sna.2006.11.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034571976
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1109/18.382012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061099556
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1109/18.532891 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061100029
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1109/btas.2007.4401912 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093631517
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1109/fdtc.2013.19 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095405435
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1109/fpl.2007.4380646 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094601494
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1109/freq.2007.4319247 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094064539
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1109/hst.2013.6581556 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094213876
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1109/iccad.2008.4681648 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093388681
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1109/icsens.2005.1597752 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095095106
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1109/isit.2006.261765 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095809980
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1109/jmems.2012.2189356 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061291176
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1109/tc.2008.212 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061534626
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1109/vlsic.2004.1346548 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093979399
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1117/12.478201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050512506
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1137/060651380 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062849070
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1137/s0097539793244708 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062879807
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1145/1278480.1278484 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005105095
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1145/168588.168596 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032246154
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1145/1866307.1866335 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046822949
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1145/2527317.2527319 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025030476
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1145/2744769.2744922 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024712606
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1145/2810103.2813670 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021712289
232 rdf:type schema:CreativeWork
233 https://doi.org/10.1145/2976749.2978295 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020738638
234 rdf:type schema:CreativeWork
235 https://doi.org/10.1145/586110.586132 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008003460
236 rdf:type schema:CreativeWork
237 https://doi.org/10.1214/aoms/1177705799 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064400795
238 rdf:type schema:CreativeWork
239 https://www.grid.ac/institutes/grid.11749.3a schema:alternateName Saarland University
240 schema:name Chair of Micromechanics, Microfluidics/Microactuators, Saarland University, Saarbrücken, Germany
241 rdf:type schema:Organization
242 https://www.grid.ac/institutes/grid.420831.c schema:alternateName Robert Bosch (United States)
243 schema:name Research and Technology Center, Robert Bosch LLC, Pittsburgh, USA
244 rdf:type schema:Organization
245 https://www.grid.ac/institutes/grid.6584.f schema:alternateName Robert Bosch (Germany)
246 schema:name Department Research and Advance Engineering, Robert Bosch GmbH, Stuttgart, Germany
247 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...