A toolbox for software optimization of QC-MDPC code-based cryptosystems View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-01-20

AUTHORS

Nir Drucker, Shay Gueron

ABSTRACT

The anticipated emergence of quantum computers in the foreseeable future drives the cryptographic community to start considering cryptosystems, which are based on problems that remain intractable even with large-scale quantum computers. One example is the family of code-based cryptosystems that relies on the syndrome decoding problem. Recent work by Misoczki et al. (in: 2013 IEEE international symposium on information theory, pp 2069–2073, 2013. https://doi.org/10.1109/ISIT.2013.6620590) showed a variant of McEliece encryption which is based on quasi cyclic moderate density parity check (QC-MDPC) codes and has significantly smaller keys than the original McEliece encryption. It was followed by the newly proposed QC-MDPC-based cryptosystems CAKE (Barreto et al. in: IMA international conference on cryptography and coding, Springer, Berlin, pp 207–226, 2017) and Ouroboros (Deneuville et al. in Ouroboros: a simple, secure and efficient key exchange protocol based on coding theory, Springer, Cham, pp 18–34, 2017. https://doi.org/10.1007/978-3-319-59879-6_2). These motivate dedicated new software optimizations. This paper lists the cryptographic primitives that QC-MDPC cryptosystems commonly employ, studies their software optimizations on modern processors, and reports the achieved speedups. It also assesses methods for side channel protection of the implementations and their performance costs. These optimized primitives offer a useful toolbox that can be used, in various ways, by designers and implementers of QC-MDPC cryptosystems. Indeed, we applied our methods to generate a platform-specific additional implementation of “BIKE”—a QC-MDPC key encapsulation mechanism (KEM) proposal submitted to the NIST Post-Quantum Project (NIST:Post-Quantum Cryptography—call for proposals, https://csrc.nist.gov/Projects/Post-Quantum-Cryptography, 2017). This gave a 5× speedup compared to the reference implementation. More... »

PAGES

1-17

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s13389-018-00200-4

DOI

http://dx.doi.org/10.1007/s13389-018-00200-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1111574621


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0804", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Data Format", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Amazon (United States)", 
          "id": "https://www.grid.ac/institutes/grid.467171.2", 
          "name": [
            "University of Haifa, Haifa, Israel", 
            "Amazon Web Services Inc., Seattle, WA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Drucker", 
        "givenName": "Nir", 
        "id": "sg:person.012251644137.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012251644137.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Amazon (United States)", 
          "id": "https://www.grid.ac/institutes/grid.467171.2", 
          "name": [
            "University of Haifa, Haifa, Israel", 
            "Amazon Web Services Inc., Seattle, WA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gueron", 
        "givenName": "Shay", 
        "id": "sg:person.01343073557.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01343073557.40"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.4236/jis.2014.53010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007016853"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2700102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009390904"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0002-9947-1969-0249212-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011358712"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-03317-9_4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014177848", 
          "https://doi.org/10.1007/978-3-642-03317-9_4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10623-015-0036-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014387498", 
          "https://doi.org/10.1007/s10623-015-0036-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bfb0024461", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022401201", 
          "https://doi.org/10.1007/bfb0024461"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-73074-3_10", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030683388", 
          "https://doi.org/10.1007/978-3-540-73074-3_10"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-73074-3_10", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030683388", 
          "https://doi.org/10.1007/978-3-540-73074-3_10"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4236/jis.2012.34039", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030714719"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-85855-3_17", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031507791", 
          "https://doi.org/10.1007/978-3-540-85855-3_17"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ipl.2010.04.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032009320"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-45682-1_10", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035790215", 
          "https://doi.org/10.1007/3-540-45682-1_10"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-30057-8_9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052289608", 
          "https://doi.org/10.1007/978-3-642-30057-8_9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tit.1962.1057683", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061645788"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4236/jis.2013.41002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072386030"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-29360-8_7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084898121", 
          "https://doi.org/10.1007/978-3-319-29360-8_7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-47560-8_12", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084915112", 
          "https://doi.org/10.1007/978-3-319-47560-8_12"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-59879-6_2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1089973383", 
          "https://doi.org/10.1007/978-3-319-59879-6_2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-71045-7_11", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092997335", 
          "https://doi.org/10.1007/978-3-319-71045-7_11"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-71045-7_11", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092997335", 
          "https://doi.org/10.1007/978-3-319-71045-7_11"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/isit.2013.6620590", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093650955"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/isit.2016.7541522", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093657706"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icc.2007.161", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093903758"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cce.2006.350824", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094230456"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/isit.2000.866513", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095730810"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tit.2018.2804444", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100953943"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-01-20", 
    "datePublishedReg": "2019-01-20", 
    "description": "The anticipated emergence of quantum computers in the foreseeable future drives the cryptographic community to start considering cryptosystems, which are based on problems that remain intractable even with large-scale quantum computers. One example is the family of code-based cryptosystems that relies on the syndrome decoding problem. Recent work by Misoczki et al. (in: 2013 IEEE international symposium on information theory, pp 2069\u20132073, 2013. https://doi.org/10.1109/ISIT.2013.6620590) showed a variant of McEliece encryption which is based on quasi cyclic moderate density parity check (QC-MDPC) codes and has significantly smaller keys than the original McEliece encryption. It was followed by the newly proposed QC-MDPC-based cryptosystems CAKE (Barreto et al. in: IMA international conference on cryptography and coding, Springer, Berlin, pp 207\u2013226, 2017) and Ouroboros (Deneuville et al. in Ouroboros: a simple, secure and efficient key exchange protocol based on coding theory, Springer, Cham, pp 18\u201334, 2017. https://doi.org/10.1007/978-3-319-59879-6_2). These motivate dedicated new software optimizations. This paper lists the cryptographic primitives that QC-MDPC cryptosystems commonly employ, studies their software optimizations on modern processors, and reports the achieved speedups. It also assesses methods for side channel protection of the implementations and their performance costs. These optimized primitives offer a useful toolbox that can be used, in various ways, by designers and implementers of QC-MDPC cryptosystems. Indeed, we applied our methods to generate a platform-specific additional implementation of \u201cBIKE\u201d\u2014a QC-MDPC key encapsulation mechanism (KEM) proposal submitted to the NIST Post-Quantum Project (NIST:Post-Quantum Cryptography\u2014call for proposals, https://csrc.nist.gov/Projects/Post-Quantum-Cryptography, 2017). This gave a 5\u00d7 speedup compared to the reference implementation.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s13389-018-00200-4", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3939743", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1136625", 
        "issn": [
          "2190-8508", 
          "2190-8516"
        ], 
        "name": "Journal of Cryptographic Engineering", 
        "type": "Periodical"
      }
    ], 
    "name": "A toolbox for software optimization of QC-MDPC code-based cryptosystems", 
    "pagination": "1-17", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "e9042ce781e517b6d295dda47c395f2e092ac72427dcf0e2eac4679dede5e727"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s13389-018-00200-4"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1111574621"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s13389-018-00200-4", 
      "https://app.dimensions.ai/details/publication/pub.1111574621"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T08:43", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000322_0000000322/records_65025_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs13389-018-00200-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s13389-018-00200-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s13389-018-00200-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s13389-018-00200-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s13389-018-00200-4'


 

This table displays all metadata directly associated to this object as RDF triples.

148 TRIPLES      21 PREDICATES      48 URIs      16 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s13389-018-00200-4 schema:about anzsrc-for:08
2 anzsrc-for:0804
3 schema:author N1e8d9bc6c5df4c81a324192bb600e61d
4 schema:citation sg:pub.10.1007/3-540-45682-1_10
5 sg:pub.10.1007/978-3-319-29360-8_7
6 sg:pub.10.1007/978-3-319-47560-8_12
7 sg:pub.10.1007/978-3-319-59879-6_2
8 sg:pub.10.1007/978-3-319-71045-7_11
9 sg:pub.10.1007/978-3-540-73074-3_10
10 sg:pub.10.1007/978-3-540-85855-3_17
11 sg:pub.10.1007/978-3-642-03317-9_4
12 sg:pub.10.1007/978-3-642-30057-8_9
13 sg:pub.10.1007/bfb0024461
14 sg:pub.10.1007/s10623-015-0036-z
15 https://doi.org/10.1016/j.ipl.2010.04.011
16 https://doi.org/10.1090/s0002-9947-1969-0249212-8
17 https://doi.org/10.1109/cce.2006.350824
18 https://doi.org/10.1109/icc.2007.161
19 https://doi.org/10.1109/isit.2000.866513
20 https://doi.org/10.1109/isit.2013.6620590
21 https://doi.org/10.1109/isit.2016.7541522
22 https://doi.org/10.1109/tit.1962.1057683
23 https://doi.org/10.1109/tit.2018.2804444
24 https://doi.org/10.1145/2700102
25 https://doi.org/10.4236/jis.2012.34039
26 https://doi.org/10.4236/jis.2013.41002
27 https://doi.org/10.4236/jis.2014.53010
28 schema:datePublished 2019-01-20
29 schema:datePublishedReg 2019-01-20
30 schema:description The anticipated emergence of quantum computers in the foreseeable future drives the cryptographic community to start considering cryptosystems, which are based on problems that remain intractable even with large-scale quantum computers. One example is the family of code-based cryptosystems that relies on the syndrome decoding problem. Recent work by Misoczki et al. (in: 2013 IEEE international symposium on information theory, pp 2069–2073, 2013. https://doi.org/10.1109/ISIT.2013.6620590) showed a variant of McEliece encryption which is based on quasi cyclic moderate density parity check (QC-MDPC) codes and has significantly smaller keys than the original McEliece encryption. It was followed by the newly proposed QC-MDPC-based cryptosystems CAKE (Barreto et al. in: IMA international conference on cryptography and coding, Springer, Berlin, pp 207–226, 2017) and Ouroboros (Deneuville et al. in Ouroboros: a simple, secure and efficient key exchange protocol based on coding theory, Springer, Cham, pp 18–34, 2017. https://doi.org/10.1007/978-3-319-59879-6_2). These motivate dedicated new software optimizations. This paper lists the cryptographic primitives that QC-MDPC cryptosystems commonly employ, studies their software optimizations on modern processors, and reports the achieved speedups. It also assesses methods for side channel protection of the implementations and their performance costs. These optimized primitives offer a useful toolbox that can be used, in various ways, by designers and implementers of QC-MDPC cryptosystems. Indeed, we applied our methods to generate a platform-specific additional implementation of “BIKE”—a QC-MDPC key encapsulation mechanism (KEM) proposal submitted to the NIST Post-Quantum Project (NIST:Post-Quantum Cryptography—call for proposals, https://csrc.nist.gov/Projects/Post-Quantum-Cryptography, 2017). This gave a 5× speedup compared to the reference implementation.
31 schema:genre research_article
32 schema:inLanguage en
33 schema:isAccessibleForFree false
34 schema:isPartOf sg:journal.1136625
35 schema:name A toolbox for software optimization of QC-MDPC code-based cryptosystems
36 schema:pagination 1-17
37 schema:productId N043afc8e3fe84ac08fca1044e865c763
38 N1e40acaa91034cd9b1dc296de6f6dced
39 Naeb8201b4f83405090928d6dbbe89cda
40 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111574621
41 https://doi.org/10.1007/s13389-018-00200-4
42 schema:sdDatePublished 2019-04-11T08:43
43 schema:sdLicense https://scigraph.springernature.com/explorer/license/
44 schema:sdPublisher Nf3770e711aac40319fa8e4e8055535df
45 schema:url https://link.springer.com/10.1007%2Fs13389-018-00200-4
46 sgo:license sg:explorer/license/
47 sgo:sdDataset articles
48 rdf:type schema:ScholarlyArticle
49 N043afc8e3fe84ac08fca1044e865c763 schema:name doi
50 schema:value 10.1007/s13389-018-00200-4
51 rdf:type schema:PropertyValue
52 N1e40acaa91034cd9b1dc296de6f6dced schema:name readcube_id
53 schema:value e9042ce781e517b6d295dda47c395f2e092ac72427dcf0e2eac4679dede5e727
54 rdf:type schema:PropertyValue
55 N1e8d9bc6c5df4c81a324192bb600e61d rdf:first sg:person.012251644137.44
56 rdf:rest Naaaf71d8e09948f2ac07dd5c452bdd3e
57 Naaaf71d8e09948f2ac07dd5c452bdd3e rdf:first sg:person.01343073557.40
58 rdf:rest rdf:nil
59 Naeb8201b4f83405090928d6dbbe89cda schema:name dimensions_id
60 schema:value pub.1111574621
61 rdf:type schema:PropertyValue
62 Nf3770e711aac40319fa8e4e8055535df schema:name Springer Nature - SN SciGraph project
63 rdf:type schema:Organization
64 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
65 schema:name Information and Computing Sciences
66 rdf:type schema:DefinedTerm
67 anzsrc-for:0804 schema:inDefinedTermSet anzsrc-for:
68 schema:name Data Format
69 rdf:type schema:DefinedTerm
70 sg:grant.3939743 http://pending.schema.org/fundedItem sg:pub.10.1007/s13389-018-00200-4
71 rdf:type schema:MonetaryGrant
72 sg:journal.1136625 schema:issn 2190-8508
73 2190-8516
74 schema:name Journal of Cryptographic Engineering
75 rdf:type schema:Periodical
76 sg:person.012251644137.44 schema:affiliation https://www.grid.ac/institutes/grid.467171.2
77 schema:familyName Drucker
78 schema:givenName Nir
79 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012251644137.44
80 rdf:type schema:Person
81 sg:person.01343073557.40 schema:affiliation https://www.grid.ac/institutes/grid.467171.2
82 schema:familyName Gueron
83 schema:givenName Shay
84 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01343073557.40
85 rdf:type schema:Person
86 sg:pub.10.1007/3-540-45682-1_10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035790215
87 https://doi.org/10.1007/3-540-45682-1_10
88 rdf:type schema:CreativeWork
89 sg:pub.10.1007/978-3-319-29360-8_7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084898121
90 https://doi.org/10.1007/978-3-319-29360-8_7
91 rdf:type schema:CreativeWork
92 sg:pub.10.1007/978-3-319-47560-8_12 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084915112
93 https://doi.org/10.1007/978-3-319-47560-8_12
94 rdf:type schema:CreativeWork
95 sg:pub.10.1007/978-3-319-59879-6_2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1089973383
96 https://doi.org/10.1007/978-3-319-59879-6_2
97 rdf:type schema:CreativeWork
98 sg:pub.10.1007/978-3-319-71045-7_11 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092997335
99 https://doi.org/10.1007/978-3-319-71045-7_11
100 rdf:type schema:CreativeWork
101 sg:pub.10.1007/978-3-540-73074-3_10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030683388
102 https://doi.org/10.1007/978-3-540-73074-3_10
103 rdf:type schema:CreativeWork
104 sg:pub.10.1007/978-3-540-85855-3_17 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031507791
105 https://doi.org/10.1007/978-3-540-85855-3_17
106 rdf:type schema:CreativeWork
107 sg:pub.10.1007/978-3-642-03317-9_4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014177848
108 https://doi.org/10.1007/978-3-642-03317-9_4
109 rdf:type schema:CreativeWork
110 sg:pub.10.1007/978-3-642-30057-8_9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052289608
111 https://doi.org/10.1007/978-3-642-30057-8_9
112 rdf:type schema:CreativeWork
113 sg:pub.10.1007/bfb0024461 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022401201
114 https://doi.org/10.1007/bfb0024461
115 rdf:type schema:CreativeWork
116 sg:pub.10.1007/s10623-015-0036-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1014387498
117 https://doi.org/10.1007/s10623-015-0036-z
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1016/j.ipl.2010.04.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032009320
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1090/s0002-9947-1969-0249212-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011358712
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1109/cce.2006.350824 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094230456
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1109/icc.2007.161 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093903758
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1109/isit.2000.866513 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095730810
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1109/isit.2013.6620590 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093650955
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1109/isit.2016.7541522 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093657706
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1109/tit.1962.1057683 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061645788
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1109/tit.2018.2804444 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100953943
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1145/2700102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009390904
138 rdf:type schema:CreativeWork
139 https://doi.org/10.4236/jis.2012.34039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030714719
140 rdf:type schema:CreativeWork
141 https://doi.org/10.4236/jis.2013.41002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072386030
142 rdf:type schema:CreativeWork
143 https://doi.org/10.4236/jis.2014.53010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007016853
144 rdf:type schema:CreativeWork
145 https://www.grid.ac/institutes/grid.467171.2 schema:alternateName Amazon (United States)
146 schema:name Amazon Web Services Inc., Seattle, WA, USA
147 University of Haifa, Haifa, Israel
148 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...