Computational aspects of correlation power analysis View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-09

AUTHORS

Paul Bottinelli, Joppe W. Bos

ABSTRACT

Since the discovery of simple power attacks, the cryptographic research community has developed significantly more advanced attack methods. The idea behind most algorithms remains to perform a statistical analysis by correlating the power trace obtained when executing a cryptographic primitive to a key-dependent guess. With the advancements of cryptographic countermeasures, it is not uncommon that sophisticated (higher order) power attacks require computation on many millions of power traces to find the desired correlation. In this paper, we study the computational aspects of calculating the most widely used correlation coefficient: the Pearson product-moment correlation coefficient. We study various time–memory trade-off techniques which apply specifically to the cryptologic setting and present methods to extend already completed computations using incremental versions. Moreover, we show how this technique can be applied to second-order attacks, reducing the attack cost significantly when adding new traces to an existing dataset. We also present methods which allow one to split the potentially huge trace set into smaller, more manageable chunks to reduce the memory requirements. Our parallel implementation of these techniques highlights the benefits of this approach as it allows efficient computations on power measurements consisting of hundreds of gigabytes on a single modern workstation. More... »

PAGES

167-181

References to SciGraph publications

  • 2013. On the Simplicity of Converting Leakages from Multivariate to Univariate in CRYPTOGRAPHIC HARDWARE AND EMBEDDED SYSTEMS - CHES 2013
  • 2002-02-08. DES and Differential Power Analysis The “Duplication” Method in CRYPTOGRAPHIC HARDWARE AND EMBEDDED SYSTEMS
  • 2011. A High-Performance Implementation of Differential Power Analysis on Graphics Cards in SMART CARD RESEARCH AND ADVANCED APPLICATIONS
  • 2011-04. Side-Channel Resistant Crypto for Less than 2,300 GE in JOURNAL OF CRYPTOLOGY
  • 2008. Comparative Evaluation of Rank Correlation Based DPA on an AES Prototype Chip in INFORMATION SECURITY
  • 2014. A More Efficient AES Threshold Implementation in PROGRESS IN CRYPTOLOGY – AFRICACRYPT 2014
  • 2014. Higher-Order Threshold Implementations in ADVANCES IN CRYPTOLOGY – ASIACRYPT 2014
  • 2014. Multi-target DPA Attacks: Pushing DPA Beyond the Limits of a Desktop Computer in ADVANCES IN CRYPTOLOGY – ASIACRYPT 2014
  • 2002. The Design of Rijndael, AES — The Advanced Encryption Standard in NONE
  • 1999. Towards Sound Approaches to Counteract Power-Analysis Attacks in ADVANCES IN CRYPTOLOGY — CRYPTO’ 99
  • 1999. Differential Power Analysis in ADVANCES IN CRYPTOLOGY — CRYPTO’ 99
  • 2005. On Second-Order Differential Power Analysis in CRYPTOGRAPHIC HARDWARE AND EMBEDDED SYSTEMS – CHES 2005
  • 2010. Correlation-Enhanced Power Analysis Collision Attack in CRYPTOGRAPHIC HARDWARE AND EMBEDDED SYSTEMS, CHES 2010
  • 2006. Higher Order Masking of the AES in TOPICS IN CRYPTOLOGY – CT-RSA 2006
  • 2006. A Proposition for Correlation Power Analysis Enhancement in CRYPTOGRAPHIC HARDWARE AND EMBEDDED SYSTEMS - CHES 2006
  • 2010. The World Is Not Enough: Another Look on Second-Order DPA in ADVANCES IN CRYPTOLOGY - ASIACRYPT 2010
  • 2012. Black-Box Side-Channel Attacks Highlight the Importance of Countermeasures in TOPICS IN CRYPTOLOGY – CT-RSA 2012
  • 2011. Pushing the Limits: A Very Compact and a Threshold Implementation of AES in ADVANCES IN CRYPTOLOGY – EUROCRYPT 2011
  • 2004. Towards Efficient Second-Order Power Analysis in CRYPTOGRAPHIC HARDWARE AND EMBEDDED SYSTEMS - CHES 2004
  • 2004. Correlation Power Analysis with a Leakage Model in CRYPTOGRAPHIC HARDWARE AND EMBEDDED SYSTEMS - CHES 2004
  • 2013. Behind the Scene of Side Channel Attacks in ADVANCES IN CRYPTOLOGY - ASIACRYPT 2013
  • 2002-01-29. Using Second-Order Power Analysis to Attack DPA Resistant Software in CRYPTOGRAPHIC HARDWARE AND EMBEDDED SYSTEMS — CHES 2000
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s13389-016-0122-9

    DOI

    http://dx.doi.org/10.1007/s13389-016-0122-9

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1002607804


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0802", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Computation Theory and Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "\u00c9cole Polytechnique F\u00e9d\u00e9rale de Lausanne", 
              "id": "https://www.grid.ac/institutes/grid.5333.6", 
              "name": [
                "EPFL, Lausanne, Switzerland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bottinelli", 
            "givenName": "Paul", 
            "id": "sg:person.010527550675.51", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010527550675.51"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "NXP (Belgium)", 
              "id": "https://www.grid.ac/institutes/grid.426026.4", 
              "name": [
                "NXP Semiconductors, Leuven, Belgium"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bos", 
            "givenName": "Joppe W.", 
            "id": "sg:person.011356726653.68", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011356726653.68"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/3-540-48405-1_25", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005179729", 
              "https://doi.org/10.1007/3-540-48405-1_25"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-662-45608-8_18", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006125346", 
              "https://doi.org/10.1007/978-3-662-45608-8_18"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-20465-4_6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007026772", 
              "https://doi.org/10.1007/978-3-642-20465-4_6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-20465-4_6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007026772", 
              "https://doi.org/10.1007/978-3-642-20465-4_6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-42033-7_26", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007985223", 
              "https://doi.org/10.1007/978-3-642-42033-7_26"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/11894063_14", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012750981", 
              "https://doi.org/10.1007/11894063_14"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/11894063_14", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012750981", 
              "https://doi.org/10.1007/11894063_14"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2307/1412159", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013196071"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-15031-9_9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016253325", 
              "https://doi.org/10.1007/978-3-642-15031-9_9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-15031-9_9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016253325", 
              "https://doi.org/10.1007/978-3-642-15031-9_9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/11545262_22", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017870762", 
              "https://doi.org/10.1007/11545262_22"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/11545262_22", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017870762", 
              "https://doi.org/10.1007/11545262_22"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-27954-6_1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019991426", 
              "https://doi.org/10.1007/978-3-642-27954-6_1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-06734-6_17", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023131825", 
              "https://doi.org/10.1007/978-3-319-06734-6_17"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-44499-8_19", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036651654", 
              "https://doi.org/10.1007/3-540-44499-8_19"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-44499-8_19", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036651654", 
              "https://doi.org/10.1007/3-540-44499-8_19"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-17373-8_7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036997867", 
              "https://doi.org/10.1007/978-3-642-17373-8_7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-17373-8_7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036997867", 
              "https://doi.org/10.1007/978-3-642-17373-8_7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/00220973.1937.11010053", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038328462"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-85886-7_24", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038394504", 
              "https://doi.org/10.1007/978-3-540-85886-7_24"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-85886-7_24", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038394504", 
              "https://doi.org/10.1007/978-3-540-85886-7_24"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-48405-1_26", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040315853", 
              "https://doi.org/10.1007/3-540-48405-1_26"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-48059-5_15", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040565118", 
              "https://doi.org/10.1007/3-540-48059-5_15"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-48059-5_15", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040565118", 
              "https://doi.org/10.1007/3-540-48059-5_15"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1098/rspl.1895.0041", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044870276"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-40349-1_1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045764295", 
              "https://doi.org/10.1007/978-3-642-40349-1_1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-28632-5_2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046806925", 
              "https://doi.org/10.1007/978-3-540-28632-5_2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-28632-5_2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046806925", 
              "https://doi.org/10.1007/978-3-540-28632-5_2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-28632-5_1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047391803", 
              "https://doi.org/10.1007/978-3-540-28632-5_1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-28632-5_1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047391803", 
              "https://doi.org/10.1007/978-3-540-28632-5_1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-27257-8_16", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048832173", 
              "https://doi.org/10.1007/978-3-642-27257-8_16"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00145-010-9086-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050982844", 
              "https://doi.org/10.1007/s00145-010-9086-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1052093804", 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-662-04722-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052093804", 
              "https://doi.org/10.1007/978-3-662-04722-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-662-04722-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052093804", 
              "https://doi.org/10.1007/978-3-662-04722-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-662-45611-8_13", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052906219", 
              "https://doi.org/10.1007/978-3-662-45611-8_13"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/11605805_14", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053725202", 
              "https://doi.org/10.1007/11605805_14"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/11605805_14", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053725202", 
              "https://doi.org/10.1007/11605805_14"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1049/iet-ifs.2010.0096", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056828531"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/biomet/30.1-2.81", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059415839"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tc.2009.15", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061534739"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2017-09", 
        "datePublishedReg": "2017-09-01", 
        "description": "Since the discovery of simple power attacks, the cryptographic research community has developed significantly more advanced attack methods. The idea behind most algorithms remains to perform a statistical analysis by correlating the power trace obtained when executing a cryptographic primitive to a key-dependent guess. With the advancements of cryptographic countermeasures, it is not uncommon that sophisticated (higher order) power attacks require computation on many millions of power traces to find the desired correlation. In this paper, we study the computational aspects of calculating the most widely used correlation coefficient: the Pearson product-moment correlation coefficient. We study various time\u2013memory trade-off techniques which apply specifically to the cryptologic setting and present methods to extend already completed computations using incremental versions. Moreover, we show how this technique can be applied to second-order attacks, reducing the attack cost significantly when adding new traces to an existing dataset. We also present methods which allow one to split the potentially huge trace set into smaller, more manageable chunks to reduce the memory requirements. Our parallel implementation of these techniques highlights the benefits of this approach as it allows efficient computations on power measurements consisting of hundreds of gigabytes on a single modern workstation.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s13389-016-0122-9", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136625", 
            "issn": [
              "2190-8508", 
              "2190-8516"
            ], 
            "name": "Journal of Cryptographic Engineering", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "7"
          }
        ], 
        "name": "Computational aspects of correlation power analysis", 
        "pagination": "167-181", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "0c6aa0643292d544788e1958da8caa1caf77fd2615a06359ac119cf421a859d4"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s13389-016-0122-9"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1002607804"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s13389-016-0122-9", 
          "https://app.dimensions.ai/details/publication/pub.1002607804"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T12:24", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000362_0000000362/records_87100_00000000.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs13389-016-0122-9"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s13389-016-0122-9'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s13389-016-0122-9'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s13389-016-0122-9'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s13389-016-0122-9'


     

    This table displays all metadata directly associated to this object as RDF triples.

    179 TRIPLES      21 PREDICATES      56 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s13389-016-0122-9 schema:about anzsrc-for:08
    2 anzsrc-for:0802
    3 schema:author N40ed731951e24dcc8ca7a6fbef453710
    4 schema:citation sg:pub.10.1007/11545262_22
    5 sg:pub.10.1007/11605805_14
    6 sg:pub.10.1007/11894063_14
    7 sg:pub.10.1007/3-540-44499-8_19
    8 sg:pub.10.1007/3-540-48059-5_15
    9 sg:pub.10.1007/3-540-48405-1_25
    10 sg:pub.10.1007/3-540-48405-1_26
    11 sg:pub.10.1007/978-3-319-06734-6_17
    12 sg:pub.10.1007/978-3-540-28632-5_1
    13 sg:pub.10.1007/978-3-540-28632-5_2
    14 sg:pub.10.1007/978-3-540-85886-7_24
    15 sg:pub.10.1007/978-3-642-15031-9_9
    16 sg:pub.10.1007/978-3-642-17373-8_7
    17 sg:pub.10.1007/978-3-642-20465-4_6
    18 sg:pub.10.1007/978-3-642-27257-8_16
    19 sg:pub.10.1007/978-3-642-27954-6_1
    20 sg:pub.10.1007/978-3-642-40349-1_1
    21 sg:pub.10.1007/978-3-642-42033-7_26
    22 sg:pub.10.1007/978-3-662-04722-4
    23 sg:pub.10.1007/978-3-662-45608-8_18
    24 sg:pub.10.1007/978-3-662-45611-8_13
    25 sg:pub.10.1007/s00145-010-9086-6
    26 https://app.dimensions.ai/details/publication/pub.1052093804
    27 https://doi.org/10.1049/iet-ifs.2010.0096
    28 https://doi.org/10.1080/00220973.1937.11010053
    29 https://doi.org/10.1093/biomet/30.1-2.81
    30 https://doi.org/10.1098/rspl.1895.0041
    31 https://doi.org/10.1109/tc.2009.15
    32 https://doi.org/10.2307/1412159
    33 schema:datePublished 2017-09
    34 schema:datePublishedReg 2017-09-01
    35 schema:description Since the discovery of simple power attacks, the cryptographic research community has developed significantly more advanced attack methods. The idea behind most algorithms remains to perform a statistical analysis by correlating the power trace obtained when executing a cryptographic primitive to a key-dependent guess. With the advancements of cryptographic countermeasures, it is not uncommon that sophisticated (higher order) power attacks require computation on many millions of power traces to find the desired correlation. In this paper, we study the computational aspects of calculating the most widely used correlation coefficient: the Pearson product-moment correlation coefficient. We study various time–memory trade-off techniques which apply specifically to the cryptologic setting and present methods to extend already completed computations using incremental versions. Moreover, we show how this technique can be applied to second-order attacks, reducing the attack cost significantly when adding new traces to an existing dataset. We also present methods which allow one to split the potentially huge trace set into smaller, more manageable chunks to reduce the memory requirements. Our parallel implementation of these techniques highlights the benefits of this approach as it allows efficient computations on power measurements consisting of hundreds of gigabytes on a single modern workstation.
    36 schema:genre research_article
    37 schema:inLanguage en
    38 schema:isAccessibleForFree false
    39 schema:isPartOf N6f0a9b47f7aa41098c65e858d8323948
    40 Na86efca12eb341489358a2fe0ed133ff
    41 sg:journal.1136625
    42 schema:name Computational aspects of correlation power analysis
    43 schema:pagination 167-181
    44 schema:productId N013b10a2e5974c9fb293a1723232089c
    45 N04ec21348c394d8eb655855e4cf719b2
    46 N7837b9da37914e158c8e80a2afe2d9ae
    47 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002607804
    48 https://doi.org/10.1007/s13389-016-0122-9
    49 schema:sdDatePublished 2019-04-11T12:24
    50 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    51 schema:sdPublisher N5c7bd24ba1714ff5b1ec975fd8b46cfa
    52 schema:url https://link.springer.com/10.1007%2Fs13389-016-0122-9
    53 sgo:license sg:explorer/license/
    54 sgo:sdDataset articles
    55 rdf:type schema:ScholarlyArticle
    56 N013b10a2e5974c9fb293a1723232089c schema:name doi
    57 schema:value 10.1007/s13389-016-0122-9
    58 rdf:type schema:PropertyValue
    59 N04ec21348c394d8eb655855e4cf719b2 schema:name dimensions_id
    60 schema:value pub.1002607804
    61 rdf:type schema:PropertyValue
    62 N40ed731951e24dcc8ca7a6fbef453710 rdf:first sg:person.010527550675.51
    63 rdf:rest Nd4846aea72da44059ca3a7dbbcca9625
    64 N5c7bd24ba1714ff5b1ec975fd8b46cfa schema:name Springer Nature - SN SciGraph project
    65 rdf:type schema:Organization
    66 N6f0a9b47f7aa41098c65e858d8323948 schema:volumeNumber 7
    67 rdf:type schema:PublicationVolume
    68 N7837b9da37914e158c8e80a2afe2d9ae schema:name readcube_id
    69 schema:value 0c6aa0643292d544788e1958da8caa1caf77fd2615a06359ac119cf421a859d4
    70 rdf:type schema:PropertyValue
    71 Na86efca12eb341489358a2fe0ed133ff schema:issueNumber 3
    72 rdf:type schema:PublicationIssue
    73 Nd4846aea72da44059ca3a7dbbcca9625 rdf:first sg:person.011356726653.68
    74 rdf:rest rdf:nil
    75 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    76 schema:name Information and Computing Sciences
    77 rdf:type schema:DefinedTerm
    78 anzsrc-for:0802 schema:inDefinedTermSet anzsrc-for:
    79 schema:name Computation Theory and Mathematics
    80 rdf:type schema:DefinedTerm
    81 sg:journal.1136625 schema:issn 2190-8508
    82 2190-8516
    83 schema:name Journal of Cryptographic Engineering
    84 rdf:type schema:Periodical
    85 sg:person.010527550675.51 schema:affiliation https://www.grid.ac/institutes/grid.5333.6
    86 schema:familyName Bottinelli
    87 schema:givenName Paul
    88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010527550675.51
    89 rdf:type schema:Person
    90 sg:person.011356726653.68 schema:affiliation https://www.grid.ac/institutes/grid.426026.4
    91 schema:familyName Bos
    92 schema:givenName Joppe W.
    93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011356726653.68
    94 rdf:type schema:Person
    95 sg:pub.10.1007/11545262_22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017870762
    96 https://doi.org/10.1007/11545262_22
    97 rdf:type schema:CreativeWork
    98 sg:pub.10.1007/11605805_14 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053725202
    99 https://doi.org/10.1007/11605805_14
    100 rdf:type schema:CreativeWork
    101 sg:pub.10.1007/11894063_14 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012750981
    102 https://doi.org/10.1007/11894063_14
    103 rdf:type schema:CreativeWork
    104 sg:pub.10.1007/3-540-44499-8_19 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036651654
    105 https://doi.org/10.1007/3-540-44499-8_19
    106 rdf:type schema:CreativeWork
    107 sg:pub.10.1007/3-540-48059-5_15 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040565118
    108 https://doi.org/10.1007/3-540-48059-5_15
    109 rdf:type schema:CreativeWork
    110 sg:pub.10.1007/3-540-48405-1_25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005179729
    111 https://doi.org/10.1007/3-540-48405-1_25
    112 rdf:type schema:CreativeWork
    113 sg:pub.10.1007/3-540-48405-1_26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040315853
    114 https://doi.org/10.1007/3-540-48405-1_26
    115 rdf:type schema:CreativeWork
    116 sg:pub.10.1007/978-3-319-06734-6_17 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023131825
    117 https://doi.org/10.1007/978-3-319-06734-6_17
    118 rdf:type schema:CreativeWork
    119 sg:pub.10.1007/978-3-540-28632-5_1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047391803
    120 https://doi.org/10.1007/978-3-540-28632-5_1
    121 rdf:type schema:CreativeWork
    122 sg:pub.10.1007/978-3-540-28632-5_2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046806925
    123 https://doi.org/10.1007/978-3-540-28632-5_2
    124 rdf:type schema:CreativeWork
    125 sg:pub.10.1007/978-3-540-85886-7_24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038394504
    126 https://doi.org/10.1007/978-3-540-85886-7_24
    127 rdf:type schema:CreativeWork
    128 sg:pub.10.1007/978-3-642-15031-9_9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016253325
    129 https://doi.org/10.1007/978-3-642-15031-9_9
    130 rdf:type schema:CreativeWork
    131 sg:pub.10.1007/978-3-642-17373-8_7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036997867
    132 https://doi.org/10.1007/978-3-642-17373-8_7
    133 rdf:type schema:CreativeWork
    134 sg:pub.10.1007/978-3-642-20465-4_6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007026772
    135 https://doi.org/10.1007/978-3-642-20465-4_6
    136 rdf:type schema:CreativeWork
    137 sg:pub.10.1007/978-3-642-27257-8_16 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048832173
    138 https://doi.org/10.1007/978-3-642-27257-8_16
    139 rdf:type schema:CreativeWork
    140 sg:pub.10.1007/978-3-642-27954-6_1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019991426
    141 https://doi.org/10.1007/978-3-642-27954-6_1
    142 rdf:type schema:CreativeWork
    143 sg:pub.10.1007/978-3-642-40349-1_1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045764295
    144 https://doi.org/10.1007/978-3-642-40349-1_1
    145 rdf:type schema:CreativeWork
    146 sg:pub.10.1007/978-3-642-42033-7_26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007985223
    147 https://doi.org/10.1007/978-3-642-42033-7_26
    148 rdf:type schema:CreativeWork
    149 sg:pub.10.1007/978-3-662-04722-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052093804
    150 https://doi.org/10.1007/978-3-662-04722-4
    151 rdf:type schema:CreativeWork
    152 sg:pub.10.1007/978-3-662-45608-8_18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006125346
    153 https://doi.org/10.1007/978-3-662-45608-8_18
    154 rdf:type schema:CreativeWork
    155 sg:pub.10.1007/978-3-662-45611-8_13 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052906219
    156 https://doi.org/10.1007/978-3-662-45611-8_13
    157 rdf:type schema:CreativeWork
    158 sg:pub.10.1007/s00145-010-9086-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050982844
    159 https://doi.org/10.1007/s00145-010-9086-6
    160 rdf:type schema:CreativeWork
    161 https://app.dimensions.ai/details/publication/pub.1052093804 schema:CreativeWork
    162 https://doi.org/10.1049/iet-ifs.2010.0096 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056828531
    163 rdf:type schema:CreativeWork
    164 https://doi.org/10.1080/00220973.1937.11010053 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038328462
    165 rdf:type schema:CreativeWork
    166 https://doi.org/10.1093/biomet/30.1-2.81 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059415839
    167 rdf:type schema:CreativeWork
    168 https://doi.org/10.1098/rspl.1895.0041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044870276
    169 rdf:type schema:CreativeWork
    170 https://doi.org/10.1109/tc.2009.15 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061534739
    171 rdf:type schema:CreativeWork
    172 https://doi.org/10.2307/1412159 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013196071
    173 rdf:type schema:CreativeWork
    174 https://www.grid.ac/institutes/grid.426026.4 schema:alternateName NXP (Belgium)
    175 schema:name NXP Semiconductors, Leuven, Belgium
    176 rdf:type schema:Organization
    177 https://www.grid.ac/institutes/grid.5333.6 schema:alternateName École Polytechnique Fédérale de Lausanne
    178 schema:name EPFL, Lausanne, Switzerland
    179 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...