Insurance pricing under ambiguity View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2014-12

AUTHORS

Alois Pichler

ABSTRACT

An actuarial model is typically selected by applying statistical methods to empirical data. The actuary employs the selected model then when pricing or reserving an individual insurance contract, as the selected model provides complete knowledge of the distribution of the potential claims. However, the empirical data are random and the model selection process is subject to errors, such that exact knowledge of the underlying distribution is in practice never available. The actuary finds her- or himself in an ambiguous position, where deviating probability measures are justifiable model selections equally well. This paper employs the Wasserstein distance to quantify the deviation from a selected model. The distance is used to justify premiums and reserves, which are based on erroneous model selections. The method applies to the Net Premium Principle, and it extends to the well-established Conditional Tail Expectation and to further, related premium principles. To demonstrate the relations and to simplify the computations, explicit formulas for the Conditional Tail Expectation for standard life insurance contracts are provided. More... »

PAGES

335-364

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s13385-014-0099-7

DOI

http://dx.doi.org/10.1007/s13385-014-0099-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1017649411


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Norwegian University of Science and Technology", 
          "id": "https://www.grid.ac/institutes/grid.5947.f", 
          "name": [
            "Norwegian University of Science and Technology, Trondheim, Norway"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pichler", 
        "givenName": "Alois", 
        "id": "sg:person.011375146527.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011375146527.27"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.2143/ast.39.2.2044655", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001796742"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/1467-9965.00068", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003263023"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.insmatheco.2013.07.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010435012"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmva.2011.06.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011712097"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/03461238.2013.830228", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015380172"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-03460-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015553379", 
          "https://doi.org/10.1007/978-3-662-03460-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-03460-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015553379", 
          "https://doi.org/10.1007/978-3-662-03460-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/14697680701455410", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022586925"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.insmatheco.2012.04.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023108367"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1515/9783110212075", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024159888"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0167-6687(97)00031-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024368668"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0167-6687(95)00010-p", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025164350"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10958-006-0056-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032354554", 
          "https://doi.org/10.1007/s10958-006-0056-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10958-006-0056-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032354554", 
          "https://doi.org/10.1007/s10958-006-0056-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00780-009-0121-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037214427", 
          "https://doi.org/10.1007/s00780-009-0121-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00780-009-0121-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037214427", 
          "https://doi.org/10.1007/s00780-009-0121-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-4-431-67891-5_4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038137805", 
          "https://doi.org/10.1007/978-4-431-67891-5_4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0167-6687(92)90028-a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041687566"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jbankfin.2011.07.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043075302"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/9780470012505.tap027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045324724"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/4-431-34342-3_4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050430262", 
          "https://doi.org/10.1007/4-431-34342-3_4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1287/moor.1120.0563", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064723250"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.21314/jor.2000.038", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068977586"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1884324", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069625544"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/253675", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069979955"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/9789814383585_0010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1088770500"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/1.9780898718751", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098476505"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511802256", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098664171"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/gsm/058", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098710084"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/6478", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098859591"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1103248331", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/9781444392715", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103248331"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014-12", 
    "datePublishedReg": "2014-12-01", 
    "description": "An actuarial model is typically selected by applying statistical methods to empirical data. The actuary employs the selected model then when pricing or reserving an individual insurance contract, as the selected model provides complete knowledge of the distribution of the potential claims. However, the empirical data are random and the model selection process is subject to errors, such that exact knowledge of the underlying distribution is in practice never available. The actuary finds her- or himself in an ambiguous position, where deviating probability measures are justifiable model selections equally well. This paper employs the Wasserstein distance to quantify the deviation from a selected model. The distance is used to justify premiums and reserves, which are based on erroneous model selections. The method applies to the Net Premium Principle, and it extends to the well-established Conditional Tail Expectation and to further, related premium principles. To demonstrate the relations and to simplify the computations, explicit formulas for the Conditional Tail Expectation for standard life insurance contracts are provided.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s13385-014-0099-7", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.4666545", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1136487", 
        "issn": [
          "2190-9733", 
          "2190-9741"
        ], 
        "name": "European Actuarial Journal", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "4"
      }
    ], 
    "name": "Insurance pricing under ambiguity", 
    "pagination": "335-364", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "541715a77870e099b359deb1760585724df3a28f23743543268b7f5deba72f1e"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s13385-014-0099-7"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1017649411"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s13385-014-0099-7", 
      "https://app.dimensions.ai/details/publication/pub.1017649411"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T20:57", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8684_00000584.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs13385-014-0099-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s13385-014-0099-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s13385-014-0099-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s13385-014-0099-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s13385-014-0099-7'


 

This table displays all metadata directly associated to this object as RDF triples.

154 TRIPLES      21 PREDICATES      56 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s13385-014-0099-7 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author N543d4872e30d41569be140b64cb8605a
4 schema:citation sg:pub.10.1007/4-431-34342-3_4
5 sg:pub.10.1007/978-3-662-03460-6
6 sg:pub.10.1007/978-4-431-67891-5_4
7 sg:pub.10.1007/s00780-009-0121-0
8 sg:pub.10.1007/s10958-006-0056-3
9 https://app.dimensions.ai/details/publication/pub.1103248331
10 https://doi.org/10.1002/9780470012505.tap027
11 https://doi.org/10.1002/9781444392715
12 https://doi.org/10.1016/0167-6687(92)90028-a
13 https://doi.org/10.1016/0167-6687(95)00010-p
14 https://doi.org/10.1016/j.insmatheco.2012.04.004
15 https://doi.org/10.1016/j.insmatheco.2013.07.005
16 https://doi.org/10.1016/j.jbankfin.2011.07.018
17 https://doi.org/10.1016/j.jmva.2011.06.005
18 https://doi.org/10.1016/s0167-6687(97)00031-0
19 https://doi.org/10.1017/cbo9780511802256
20 https://doi.org/10.1080/03461238.2013.830228
21 https://doi.org/10.1080/14697680701455410
22 https://doi.org/10.1090/gsm/058
23 https://doi.org/10.1111/1467-9965.00068
24 https://doi.org/10.1137/1.9780898718751
25 https://doi.org/10.1142/6478
26 https://doi.org/10.1142/9789814383585_0010
27 https://doi.org/10.1287/moor.1120.0563
28 https://doi.org/10.1515/9783110212075
29 https://doi.org/10.21314/jor.2000.038
30 https://doi.org/10.2143/ast.39.2.2044655
31 https://doi.org/10.2307/1884324
32 https://doi.org/10.2307/253675
33 schema:datePublished 2014-12
34 schema:datePublishedReg 2014-12-01
35 schema:description An actuarial model is typically selected by applying statistical methods to empirical data. The actuary employs the selected model then when pricing or reserving an individual insurance contract, as the selected model provides complete knowledge of the distribution of the potential claims. However, the empirical data are random and the model selection process is subject to errors, such that exact knowledge of the underlying distribution is in practice never available. The actuary finds her- or himself in an ambiguous position, where deviating probability measures are justifiable model selections equally well. This paper employs the Wasserstein distance to quantify the deviation from a selected model. The distance is used to justify premiums and reserves, which are based on erroneous model selections. The method applies to the Net Premium Principle, and it extends to the well-established Conditional Tail Expectation and to further, related premium principles. To demonstrate the relations and to simplify the computations, explicit formulas for the Conditional Tail Expectation for standard life insurance contracts are provided.
36 schema:genre research_article
37 schema:inLanguage en
38 schema:isAccessibleForFree false
39 schema:isPartOf N328b0e9cbad042d39280c044a17532c8
40 N8da26e226bde4818aabca319eb028b38
41 sg:journal.1136487
42 schema:name Insurance pricing under ambiguity
43 schema:pagination 335-364
44 schema:productId N5d145c756ca6498cb6489cc31db9b211
45 N72cbf42195e24af6851d133cfef383eb
46 Nfa9c9011ef6c44e5af33205d9727bbd3
47 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017649411
48 https://doi.org/10.1007/s13385-014-0099-7
49 schema:sdDatePublished 2019-04-10T20:57
50 schema:sdLicense https://scigraph.springernature.com/explorer/license/
51 schema:sdPublisher N8e9bb3ddce9444e18082429805c14489
52 schema:url http://link.springer.com/10.1007%2Fs13385-014-0099-7
53 sgo:license sg:explorer/license/
54 sgo:sdDataset articles
55 rdf:type schema:ScholarlyArticle
56 N328b0e9cbad042d39280c044a17532c8 schema:volumeNumber 4
57 rdf:type schema:PublicationVolume
58 N543d4872e30d41569be140b64cb8605a rdf:first sg:person.011375146527.27
59 rdf:rest rdf:nil
60 N5d145c756ca6498cb6489cc31db9b211 schema:name dimensions_id
61 schema:value pub.1017649411
62 rdf:type schema:PropertyValue
63 N72cbf42195e24af6851d133cfef383eb schema:name doi
64 schema:value 10.1007/s13385-014-0099-7
65 rdf:type schema:PropertyValue
66 N8da26e226bde4818aabca319eb028b38 schema:issueNumber 2
67 rdf:type schema:PublicationIssue
68 N8e9bb3ddce9444e18082429805c14489 schema:name Springer Nature - SN SciGraph project
69 rdf:type schema:Organization
70 Nfa9c9011ef6c44e5af33205d9727bbd3 schema:name readcube_id
71 schema:value 541715a77870e099b359deb1760585724df3a28f23743543268b7f5deba72f1e
72 rdf:type schema:PropertyValue
73 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
74 schema:name Mathematical Sciences
75 rdf:type schema:DefinedTerm
76 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
77 schema:name Statistics
78 rdf:type schema:DefinedTerm
79 sg:grant.4666545 http://pending.schema.org/fundedItem sg:pub.10.1007/s13385-014-0099-7
80 rdf:type schema:MonetaryGrant
81 sg:journal.1136487 schema:issn 2190-9733
82 2190-9741
83 schema:name European Actuarial Journal
84 rdf:type schema:Periodical
85 sg:person.011375146527.27 schema:affiliation https://www.grid.ac/institutes/grid.5947.f
86 schema:familyName Pichler
87 schema:givenName Alois
88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011375146527.27
89 rdf:type schema:Person
90 sg:pub.10.1007/4-431-34342-3_4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050430262
91 https://doi.org/10.1007/4-431-34342-3_4
92 rdf:type schema:CreativeWork
93 sg:pub.10.1007/978-3-662-03460-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015553379
94 https://doi.org/10.1007/978-3-662-03460-6
95 rdf:type schema:CreativeWork
96 sg:pub.10.1007/978-4-431-67891-5_4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038137805
97 https://doi.org/10.1007/978-4-431-67891-5_4
98 rdf:type schema:CreativeWork
99 sg:pub.10.1007/s00780-009-0121-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037214427
100 https://doi.org/10.1007/s00780-009-0121-0
101 rdf:type schema:CreativeWork
102 sg:pub.10.1007/s10958-006-0056-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032354554
103 https://doi.org/10.1007/s10958-006-0056-3
104 rdf:type schema:CreativeWork
105 https://app.dimensions.ai/details/publication/pub.1103248331 schema:CreativeWork
106 https://doi.org/10.1002/9780470012505.tap027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045324724
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1002/9781444392715 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103248331
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1016/0167-6687(92)90028-a schema:sameAs https://app.dimensions.ai/details/publication/pub.1041687566
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1016/0167-6687(95)00010-p schema:sameAs https://app.dimensions.ai/details/publication/pub.1025164350
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1016/j.insmatheco.2012.04.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023108367
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1016/j.insmatheco.2013.07.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010435012
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1016/j.jbankfin.2011.07.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043075302
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1016/j.jmva.2011.06.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011712097
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1016/s0167-6687(97)00031-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024368668
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1017/cbo9780511802256 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098664171
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1080/03461238.2013.830228 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015380172
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1080/14697680701455410 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022586925
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1090/gsm/058 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098710084
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1111/1467-9965.00068 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003263023
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1137/1.9780898718751 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098476505
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1142/6478 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098859591
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1142/9789814383585_0010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1088770500
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1287/moor.1120.0563 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064723250
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1515/9783110212075 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024159888
143 rdf:type schema:CreativeWork
144 https://doi.org/10.21314/jor.2000.038 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068977586
145 rdf:type schema:CreativeWork
146 https://doi.org/10.2143/ast.39.2.2044655 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001796742
147 rdf:type schema:CreativeWork
148 https://doi.org/10.2307/1884324 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069625544
149 rdf:type schema:CreativeWork
150 https://doi.org/10.2307/253675 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069979955
151 rdf:type schema:CreativeWork
152 https://www.grid.ac/institutes/grid.5947.f schema:alternateName Norwegian University of Science and Technology
153 schema:name Norwegian University of Science and Technology, Trondheim, Norway
154 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...