Zirconia-Based Nanomaterials for Alternative Energy Application: Concept of Research in Smart Laboratory View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2022-06-20

AUTHORS

Anton Gorban, Artem Shylo, Viktoriia Dmitrenko, Sergii Tsololo, Leonid Akhkozov, Valery Burkhovetsky, Olesya Shapovalova, Oksana Gorban, Igor Danilenko

ABSTRACT

The engineering of doped zirconia nanoparticles (NPs) for energy application is realized in concept Research Smart Laboratory. To improve nanomaterials’ engineering, correlations of “salt concentration—powder dispersity” and “calcined temperature—particle’s sizes” were built. The correlation of “materials structure—materials functionality” is made. The technology forming ceramics with varying grain sizes and densities under the same thermodynamic conditions (1350 °C) from NPs with different sizes is developed. The impedance spectroscopy with the distribution of relaxation time analysis is used for ionic conductivity ceramic investigation in range 240–900 °C. The activation energies of the grain and grain boundary oxygen diffusion are calculated. It was shown that the energy activation of bulk oxygen diffusion does not depend on ceramic grain size (Ea = 0.9 eV). The energies activation of grain boundary oxygen diffusion estimated in the framework of the bricklayer model show a weak growth with the rising of ceramic grains sizes. The values of the volume activation energy are close to the grain-boundary activation energy for ceramics obtained from nanoparticles smaller than 18 nm. It was found that the grain boundary space contains two types of elements with different geometries. The size of NPs used for ceramic determines the size of grain boundaries elements. It was shown that the density of sintered ceramic has a more substantial effect on its electrophysical properties than grain size. The NPs sizes of 18–24 nm are optimal for forming pressed powder compacts and sintered ceramics with high density. More... »

PAGES

1-17

References to SciGraph publications

  • 1999-04. Brick Layer Model Analysis of Nanoscale-to-Microscale Cerium Dioxide in JOURNAL OF ELECTROCERAMICS
  • 2022-01-15. Hydrated zirconia nanoparticles as media for electrical charge accumulation in JOURNAL OF NANOPARTICLE RESEARCH
  • 2021-10-12. Mechanochemical synthesis of metal oxide nanoparticles in COMMUNICATIONS CHEMISTRY
  • 2019-03-01. Direct conversion of the water adsorption energy to electricity on the surface of zirconia nanoparticles in APPLIED NANOSCIENCE
  • 2006. Enterprise Ontology, Theory and Methodology in NONE
  • 2019-02-28. The effects of precipitants on co-precipitation synthesis of yttria-stabilized zirconia nanocrystalline powders in JOURNAL OF SOL-GEL SCIENCE AND TECHNOLOGY
  • 2016-10-30. Electric field assisted sintering of electroceramics and in situ analysis by impedance spectroscopy in JOURNAL OF ELECTROCERAMICS
  • 2016-08-23. Effects of size on mass density and its influence on mechanical and thermal properties of ZrO2 nanoparticles in different structures in BULLETIN OF MATERIALS SCIENCE
  • 2017-02-11. Reliable nanomaterial classification of powders using the volume-specific surface area method in JOURNAL OF NANOPARTICLE RESEARCH
  • 2019-02-20. Charged grain boundary transitions in ionic ceramics for energy applications in NPJ COMPUTATIONAL MATERIALS
  • 2014-11-29. Magnetic hyperthermia studies on water-soluble polyacrylic acid-coated cobalt ferrite nanoparticles in JOURNAL OF NANOPARTICLE RESEARCH
  • 2021-10-20. Influence of microstructure and crystalline phases on impedance spectra of sodium conducting glass ceramics produced from glass powder in JOURNAL OF SOLID STATE ELECTROCHEMISTRY
  • 2018-10-09. Interface-mediated hygroelectric generator with an output voltage approaching 1.5 volts in NATURE COMMUNICATIONS
  • 2011-03-25. Mesoscopic phenomena in oxide nanoparticles systems: processes of growth in JOURNAL OF NANOPARTICLE RESEARCH
  • 2020-10-16. Review of solid oxide fuel cell materials: cathode, anode, and electrolyte in ENERGY TRANSITIONS
  • 2020-06-04. Electrophysical properties of hydrated porous dispersed system based on zirconia nanopowders in APPLIED NANOSCIENCE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s13369-022-06976-2

    DOI

    http://dx.doi.org/10.1007/s13369-022-06976-2

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1148809730


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Materials Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Donetsk National Technical University, Pokrovsk, Ukraine", 
              "id": "http://www.grid.ac/institutes/grid.445415.5", 
              "name": [
                "Donetsk National Technical University, Pokrovsk, Ukraine"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Gorban", 
            "givenName": "Anton", 
            "id": "sg:person.011245323155.41", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011245323155.41"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Material Science Department, Donetsk Institute for Physics and Engineering Named After O.O. Galkin NAS of Ukraine, Kiev, Ukraine", 
              "id": "http://www.grid.ac/institutes/grid.418751.e", 
              "name": [
                "Material Science Department, Donetsk Institute for Physics and Engineering Named After O.O. Galkin NAS of Ukraine, Kiev, Ukraine"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Shylo", 
            "givenName": "Artem", 
            "id": "sg:person.011111325312.39", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011111325312.39"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Material Science Department, Donetsk Institute for Physics and Engineering Named After O.O. Galkin NAS of Ukraine, Kiev, Ukraine", 
              "id": "http://www.grid.ac/institutes/grid.418751.e", 
              "name": [
                "Material Science Department, Donetsk Institute for Physics and Engineering Named After O.O. Galkin NAS of Ukraine, Kiev, Ukraine"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Dmitrenko", 
            "givenName": "Viktoriia", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Donetsk National Technical University, Pokrovsk, Ukraine", 
              "id": "http://www.grid.ac/institutes/grid.445415.5", 
              "name": [
                "Donetsk National Technical University, Pokrovsk, Ukraine"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Tsololo", 
            "givenName": "Sergii", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Material Science Department, Donetsk Institute for Physics and Engineering Named After O.O. Galkin NAS of Ukraine, Kiev, Ukraine", 
              "id": "http://www.grid.ac/institutes/grid.418751.e", 
              "name": [
                "Material Science Department, Donetsk Institute for Physics and Engineering Named After O.O. Galkin NAS of Ukraine, Kiev, Ukraine"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Akhkozov", 
            "givenName": "Leonid", 
            "id": "sg:person.013053703701.67", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013053703701.67"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Material Science Department, Donetsk Institute for Physics and Engineering Named After O.O. Galkin NAS of Ukraine, Kiev, Ukraine", 
              "id": "http://www.grid.ac/institutes/grid.418751.e", 
              "name": [
                "Material Science Department, Donetsk Institute for Physics and Engineering Named After O.O. Galkin NAS of Ukraine, Kiev, Ukraine"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Burkhovetsky", 
            "givenName": "Valery", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "REQUIMTE, Faculdade de Ciencias e Technologia, Universidade Nova de Lisboa, Quina de Torre, 2829-516, Caparica, Portugal", 
              "id": "http://www.grid.ac/institutes/grid.10772.33", 
              "name": [
                "REQUIMTE, Faculdade de Ciencias e Technologia, Universidade Nova de Lisboa, Quina de Torre, 2829-516, Caparica, Portugal"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Shapovalova", 
            "givenName": "Olesya", 
            "id": "sg:person.011013721355.15", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011013721355.15"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Material Science Department, Donetsk Institute for Physics and Engineering Named After O.O. Galkin NAS of Ukraine, Kiev, Ukraine", 
              "id": "http://www.grid.ac/institutes/grid.418751.e", 
              "name": [
                "Material Science Department, Donetsk Institute for Physics and Engineering Named After O.O. Galkin NAS of Ukraine, Kiev, Ukraine"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Gorban", 
            "givenName": "Oksana", 
            "id": "sg:person.011756271301.56", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011756271301.56"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Material Science Department, Donetsk Institute for Physics and Engineering Named After O.O. Galkin NAS of Ukraine, Kiev, Ukraine", 
              "id": "http://www.grid.ac/institutes/grid.418751.e", 
              "name": [
                "Material Science Department, Donetsk Institute for Physics and Engineering Named After O.O. Galkin NAS of Ukraine, Kiev, Ukraine"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Danilenko", 
            "givenName": "Igor", 
            "id": "sg:person.0732652645.16", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0732652645.16"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s12034-016-1244-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036751726", 
              "https://doi.org/10.1007/s12034-016-1244-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s13204-020-01471-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1128228517", 
              "https://doi.org/10.1007/s13204-020-01471-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41524-019-0159-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1112223756", 
              "https://doi.org/10.1038/s41524-019-0159-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s42004-021-00582-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1141815476", 
              "https://doi.org/10.1038/s42004-021-00582-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11051-022-05407-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1144707647", 
              "https://doi.org/10.1007/s11051-022-05407-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10008-021-05063-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1142018853", 
              "https://doi.org/10.1007/s10008-021-05063-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11051-014-2773-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016459390", 
              "https://doi.org/10.1007/s11051-014-2773-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10971-019-04947-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1112463058", 
              "https://doi.org/10.1007/s10971-019-04947-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s13204-019-00979-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1112492484", 
              "https://doi.org/10.1007/s13204-019-00979-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10832-016-0054-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042968019", 
              "https://doi.org/10.1007/s10832-016-0054-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-33149-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034207829", 
              "https://doi.org/10.1007/3-540-33149-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1009998114205", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012212896", 
              "https://doi.org/10.1023/a:1009998114205"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11051-011-0329-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025424151", 
              "https://doi.org/10.1007/s11051-011-0329-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11051-017-3741-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1083742397", 
              "https://doi.org/10.1007/s11051-017-3741-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s41825-020-00029-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1131846450", 
              "https://doi.org/10.1007/s41825-020-00029-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41467-018-06633-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1107377863", 
              "https://doi.org/10.1038/s41467-018-06633-z"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2022-06-20", 
        "datePublishedReg": "2022-06-20", 
        "description": "The engineering of doped zirconia nanoparticles (NPs) for energy application is realized in concept Research Smart Laboratory. To improve nanomaterials\u2019 engineering, correlations of \u201csalt concentration\u2014powder dispersity\u201d and \u201ccalcined temperature\u2014particle\u2019s sizes\u201d were built. The correlation of \u201cmaterials structure\u2014materials functionality\u201d is made. The technology forming ceramics with varying grain sizes and densities under the same thermodynamic conditions (1350\u00a0\u00b0C) from NPs with different sizes is developed. The impedance spectroscopy with the distribution of relaxation time analysis is used for ionic conductivity ceramic investigation in range 240\u2013900\u00a0\u00b0C. The activation energies of the grain and grain boundary oxygen diffusion are calculated. It was shown that the energy activation of bulk oxygen diffusion does not depend on ceramic grain size (Ea\u2009=\u20090.9\u00a0eV). The energies activation of grain boundary oxygen diffusion estimated in the framework of the bricklayer model show a weak growth with the rising of ceramic grains sizes. The values of the volume activation energy are close to the grain-boundary activation energy for ceramics obtained from nanoparticles smaller than 18\u00a0nm. It was found that the grain boundary space contains two types of elements with different geometries. The size of NPs used for ceramic determines the size of grain boundaries elements. It was shown that the density of sintered ceramic has a more substantial effect on its electrophysical properties than grain size. The NPs sizes of 18\u201324\u00a0nm are optimal for forming pressed powder compacts and sintered ceramics with high density.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s13369-022-06976-2", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1372786", 
            "issn": [
              "2193-567X", 
              "2191-4281"
            ], 
            "name": "Arabian Journal for Science and Engineering", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }
        ], 
        "keywords": [
          "grain boundary oxygen diffusion", 
          "ceramic grain size", 
          "grain size", 
          "energy applications", 
          "oxygen diffusion", 
          "grain boundary activation energy", 
          "alternative energy applications", 
          "grain boundary elements", 
          "size of nanoparticles", 
          "activation energy", 
          "energy activation", 
          "smart laboratory", 
          "bulk oxygen diffusion", 
          "powder compacts", 
          "relaxation time analysis", 
          "zirconia nanoparticles", 
          "grain boundary space", 
          "nanoparticles", 
          "electrophysical properties", 
          "NP size", 
          "bricklayer model", 
          "ceramics", 
          "impedance spectroscopy", 
          "boundary elements", 
          "types of elements", 
          "same thermodynamic conditions", 
          "different geometries", 
          "nanomaterials", 
          "thermodynamic conditions", 
          "diffusion", 
          "engineering", 
          "different sizes", 
          "energy", 
          "high density", 
          "density", 
          "range 240", 
          "zirconia", 
          "compacts", 
          "applications", 
          "size", 
          "dispersity", 
          "ceramic investigations", 
          "grains", 
          "time analysis", 
          "functionality", 
          "spectroscopy", 
          "geometry", 
          "properties", 
          "technology", 
          "elements", 
          "substantial effect", 
          "laboratory", 
          "conditions", 
          "investigation", 
          "boundary space", 
          "distribution", 
          "model", 
          "values", 
          "effect", 
          "concept", 
          "analysis", 
          "weak growth", 
          "types", 
          "growth", 
          "correlation", 
          "space", 
          "framework", 
          "research", 
          "determine", 
          "concept of research", 
          "activation"
        ], 
        "name": "Zirconia-Based Nanomaterials for Alternative Energy Application: Concept of Research in Smart Laboratory", 
        "pagination": "1-17", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1148809730"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s13369-022-06976-2"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s13369-022-06976-2", 
          "https://app.dimensions.ai/details/publication/pub.1148809730"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-12-01T06:44", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_946.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s13369-022-06976-2"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s13369-022-06976-2'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s13369-022-06976-2'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s13369-022-06976-2'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s13369-022-06976-2'


     

    This table displays all metadata directly associated to this object as RDF triples.

    245 TRIPLES      21 PREDICATES      109 URIs      85 LITERALS      4 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s13369-022-06976-2 schema:about anzsrc-for:09
    2 anzsrc-for:0912
    3 schema:author N7301d22951884fd1a998a806fe50fd18
    4 schema:citation sg:pub.10.1007/3-540-33149-2
    5 sg:pub.10.1007/s10008-021-05063-0
    6 sg:pub.10.1007/s10832-016-0054-x
    7 sg:pub.10.1007/s10971-019-04947-y
    8 sg:pub.10.1007/s11051-011-0329-8
    9 sg:pub.10.1007/s11051-014-2773-8
    10 sg:pub.10.1007/s11051-017-3741-x
    11 sg:pub.10.1007/s11051-022-05407-5
    12 sg:pub.10.1007/s12034-016-1244-5
    13 sg:pub.10.1007/s13204-019-00979-6
    14 sg:pub.10.1007/s13204-020-01471-2
    15 sg:pub.10.1007/s41825-020-00029-8
    16 sg:pub.10.1023/a:1009998114205
    17 sg:pub.10.1038/s41467-018-06633-z
    18 sg:pub.10.1038/s41524-019-0159-2
    19 sg:pub.10.1038/s42004-021-00582-3
    20 schema:datePublished 2022-06-20
    21 schema:datePublishedReg 2022-06-20
    22 schema:description The engineering of doped zirconia nanoparticles (NPs) for energy application is realized in concept Research Smart Laboratory. To improve nanomaterials’ engineering, correlations of “salt concentration—powder dispersity” and “calcined temperature—particle’s sizes” were built. The correlation of “materials structure—materials functionality” is made. The technology forming ceramics with varying grain sizes and densities under the same thermodynamic conditions (1350 °C) from NPs with different sizes is developed. The impedance spectroscopy with the distribution of relaxation time analysis is used for ionic conductivity ceramic investigation in range 240–900 °C. The activation energies of the grain and grain boundary oxygen diffusion are calculated. It was shown that the energy activation of bulk oxygen diffusion does not depend on ceramic grain size (Ea = 0.9 eV). The energies activation of grain boundary oxygen diffusion estimated in the framework of the bricklayer model show a weak growth with the rising of ceramic grains sizes. The values of the volume activation energy are close to the grain-boundary activation energy for ceramics obtained from nanoparticles smaller than 18 nm. It was found that the grain boundary space contains two types of elements with different geometries. The size of NPs used for ceramic determines the size of grain boundaries elements. It was shown that the density of sintered ceramic has a more substantial effect on its electrophysical properties than grain size. The NPs sizes of 18–24 nm are optimal for forming pressed powder compacts and sintered ceramics with high density.
    23 schema:genre article
    24 schema:isAccessibleForFree false
    25 schema:isPartOf sg:journal.1372786
    26 schema:keywords NP size
    27 activation
    28 activation energy
    29 alternative energy applications
    30 analysis
    31 applications
    32 boundary elements
    33 boundary space
    34 bricklayer model
    35 bulk oxygen diffusion
    36 ceramic grain size
    37 ceramic investigations
    38 ceramics
    39 compacts
    40 concept
    41 concept of research
    42 conditions
    43 correlation
    44 density
    45 determine
    46 different geometries
    47 different sizes
    48 diffusion
    49 dispersity
    50 distribution
    51 effect
    52 electrophysical properties
    53 elements
    54 energy
    55 energy activation
    56 energy applications
    57 engineering
    58 framework
    59 functionality
    60 geometry
    61 grain boundary activation energy
    62 grain boundary elements
    63 grain boundary oxygen diffusion
    64 grain boundary space
    65 grain size
    66 grains
    67 growth
    68 high density
    69 impedance spectroscopy
    70 investigation
    71 laboratory
    72 model
    73 nanomaterials
    74 nanoparticles
    75 oxygen diffusion
    76 powder compacts
    77 properties
    78 range 240
    79 relaxation time analysis
    80 research
    81 same thermodynamic conditions
    82 size
    83 size of nanoparticles
    84 smart laboratory
    85 space
    86 spectroscopy
    87 substantial effect
    88 technology
    89 thermodynamic conditions
    90 time analysis
    91 types
    92 types of elements
    93 values
    94 weak growth
    95 zirconia
    96 zirconia nanoparticles
    97 schema:name Zirconia-Based Nanomaterials for Alternative Energy Application: Concept of Research in Smart Laboratory
    98 schema:pagination 1-17
    99 schema:productId N751e70cb37264aa2bf78657d481d7993
    100 N7f6e31a6c51d439aa98be402d1712903
    101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1148809730
    102 https://doi.org/10.1007/s13369-022-06976-2
    103 schema:sdDatePublished 2022-12-01T06:44
    104 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    105 schema:sdPublisher Naeb8327fc77348739763539e69f1bc14
    106 schema:url https://doi.org/10.1007/s13369-022-06976-2
    107 sgo:license sg:explorer/license/
    108 sgo:sdDataset articles
    109 rdf:type schema:ScholarlyArticle
    110 N143d6c7c1bb043b2a793ba187256ebc3 rdf:first N21384478f0ff4f94aab9c6611c56232e
    111 rdf:rest N5975555386b14054b70570e0623813f1
    112 N21384478f0ff4f94aab9c6611c56232e schema:affiliation grid-institutes:grid.418751.e
    113 schema:familyName Burkhovetsky
    114 schema:givenName Valery
    115 rdf:type schema:Person
    116 N2ee4e1c63fc84e90b8827517252d7d57 rdf:first N5523a8b8914844fd94206e2dfde27b8a
    117 rdf:rest N984716d3273048d59820bf74c60a6d6f
    118 N359852ec6b2b4091a820f3cea7d1b849 rdf:first sg:person.011756271301.56
    119 rdf:rest N4e92a82a15344ee298852ac00162f46f
    120 N3c05b881447645229dcaa376d157d015 rdf:first sg:person.011111325312.39
    121 rdf:rest N2ee4e1c63fc84e90b8827517252d7d57
    122 N4e92a82a15344ee298852ac00162f46f rdf:first sg:person.0732652645.16
    123 rdf:rest rdf:nil
    124 N5523a8b8914844fd94206e2dfde27b8a schema:affiliation grid-institutes:grid.418751.e
    125 schema:familyName Dmitrenko
    126 schema:givenName Viktoriia
    127 rdf:type schema:Person
    128 N5975555386b14054b70570e0623813f1 rdf:first sg:person.011013721355.15
    129 rdf:rest N359852ec6b2b4091a820f3cea7d1b849
    130 N7301d22951884fd1a998a806fe50fd18 rdf:first sg:person.011245323155.41
    131 rdf:rest N3c05b881447645229dcaa376d157d015
    132 N751e70cb37264aa2bf78657d481d7993 schema:name doi
    133 schema:value 10.1007/s13369-022-06976-2
    134 rdf:type schema:PropertyValue
    135 N7f6e31a6c51d439aa98be402d1712903 schema:name dimensions_id
    136 schema:value pub.1148809730
    137 rdf:type schema:PropertyValue
    138 N984716d3273048d59820bf74c60a6d6f rdf:first Nb7fbe391b2224433aebcd9befc630a33
    139 rdf:rest Na805e444ebf040288360aeb486baa98e
    140 Na805e444ebf040288360aeb486baa98e rdf:first sg:person.013053703701.67
    141 rdf:rest N143d6c7c1bb043b2a793ba187256ebc3
    142 Naeb8327fc77348739763539e69f1bc14 schema:name Springer Nature - SN SciGraph project
    143 rdf:type schema:Organization
    144 Nb7fbe391b2224433aebcd9befc630a33 schema:affiliation grid-institutes:grid.445415.5
    145 schema:familyName Tsololo
    146 schema:givenName Sergii
    147 rdf:type schema:Person
    148 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    149 schema:name Engineering
    150 rdf:type schema:DefinedTerm
    151 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
    152 schema:name Materials Engineering
    153 rdf:type schema:DefinedTerm
    154 sg:journal.1372786 schema:issn 2191-4281
    155 2193-567X
    156 schema:name Arabian Journal for Science and Engineering
    157 schema:publisher Springer Nature
    158 rdf:type schema:Periodical
    159 sg:person.011013721355.15 schema:affiliation grid-institutes:grid.10772.33
    160 schema:familyName Shapovalova
    161 schema:givenName Olesya
    162 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011013721355.15
    163 rdf:type schema:Person
    164 sg:person.011111325312.39 schema:affiliation grid-institutes:grid.418751.e
    165 schema:familyName Shylo
    166 schema:givenName Artem
    167 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011111325312.39
    168 rdf:type schema:Person
    169 sg:person.011245323155.41 schema:affiliation grid-institutes:grid.445415.5
    170 schema:familyName Gorban
    171 schema:givenName Anton
    172 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011245323155.41
    173 rdf:type schema:Person
    174 sg:person.011756271301.56 schema:affiliation grid-institutes:grid.418751.e
    175 schema:familyName Gorban
    176 schema:givenName Oksana
    177 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011756271301.56
    178 rdf:type schema:Person
    179 sg:person.013053703701.67 schema:affiliation grid-institutes:grid.418751.e
    180 schema:familyName Akhkozov
    181 schema:givenName Leonid
    182 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013053703701.67
    183 rdf:type schema:Person
    184 sg:person.0732652645.16 schema:affiliation grid-institutes:grid.418751.e
    185 schema:familyName Danilenko
    186 schema:givenName Igor
    187 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0732652645.16
    188 rdf:type schema:Person
    189 sg:pub.10.1007/3-540-33149-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034207829
    190 https://doi.org/10.1007/3-540-33149-2
    191 rdf:type schema:CreativeWork
    192 sg:pub.10.1007/s10008-021-05063-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1142018853
    193 https://doi.org/10.1007/s10008-021-05063-0
    194 rdf:type schema:CreativeWork
    195 sg:pub.10.1007/s10832-016-0054-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1042968019
    196 https://doi.org/10.1007/s10832-016-0054-x
    197 rdf:type schema:CreativeWork
    198 sg:pub.10.1007/s10971-019-04947-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1112463058
    199 https://doi.org/10.1007/s10971-019-04947-y
    200 rdf:type schema:CreativeWork
    201 sg:pub.10.1007/s11051-011-0329-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025424151
    202 https://doi.org/10.1007/s11051-011-0329-8
    203 rdf:type schema:CreativeWork
    204 sg:pub.10.1007/s11051-014-2773-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016459390
    205 https://doi.org/10.1007/s11051-014-2773-8
    206 rdf:type schema:CreativeWork
    207 sg:pub.10.1007/s11051-017-3741-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1083742397
    208 https://doi.org/10.1007/s11051-017-3741-x
    209 rdf:type schema:CreativeWork
    210 sg:pub.10.1007/s11051-022-05407-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1144707647
    211 https://doi.org/10.1007/s11051-022-05407-5
    212 rdf:type schema:CreativeWork
    213 sg:pub.10.1007/s12034-016-1244-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036751726
    214 https://doi.org/10.1007/s12034-016-1244-5
    215 rdf:type schema:CreativeWork
    216 sg:pub.10.1007/s13204-019-00979-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112492484
    217 https://doi.org/10.1007/s13204-019-00979-6
    218 rdf:type schema:CreativeWork
    219 sg:pub.10.1007/s13204-020-01471-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1128228517
    220 https://doi.org/10.1007/s13204-020-01471-2
    221 rdf:type schema:CreativeWork
    222 sg:pub.10.1007/s41825-020-00029-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1131846450
    223 https://doi.org/10.1007/s41825-020-00029-8
    224 rdf:type schema:CreativeWork
    225 sg:pub.10.1023/a:1009998114205 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012212896
    226 https://doi.org/10.1023/a:1009998114205
    227 rdf:type schema:CreativeWork
    228 sg:pub.10.1038/s41467-018-06633-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1107377863
    229 https://doi.org/10.1038/s41467-018-06633-z
    230 rdf:type schema:CreativeWork
    231 sg:pub.10.1038/s41524-019-0159-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112223756
    232 https://doi.org/10.1038/s41524-019-0159-2
    233 rdf:type schema:CreativeWork
    234 sg:pub.10.1038/s42004-021-00582-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1141815476
    235 https://doi.org/10.1038/s42004-021-00582-3
    236 rdf:type schema:CreativeWork
    237 grid-institutes:grid.10772.33 schema:alternateName REQUIMTE, Faculdade de Ciencias e Technologia, Universidade Nova de Lisboa, Quina de Torre, 2829-516, Caparica, Portugal
    238 schema:name REQUIMTE, Faculdade de Ciencias e Technologia, Universidade Nova de Lisboa, Quina de Torre, 2829-516, Caparica, Portugal
    239 rdf:type schema:Organization
    240 grid-institutes:grid.418751.e schema:alternateName Material Science Department, Donetsk Institute for Physics and Engineering Named After O.O. Galkin NAS of Ukraine, Kiev, Ukraine
    241 schema:name Material Science Department, Donetsk Institute for Physics and Engineering Named After O.O. Galkin NAS of Ukraine, Kiev, Ukraine
    242 rdf:type schema:Organization
    243 grid-institutes:grid.445415.5 schema:alternateName Donetsk National Technical University, Pokrovsk, Ukraine
    244 schema:name Donetsk National Technical University, Pokrovsk, Ukraine
    245 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...