Training ANFIS by Using an Adaptive and Hybrid Artificial Bee Colony Algorithm (aABC) for the Identification of Nonlinear Static Systems View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-04

AUTHORS

Dervis Karaboga, Ebubekir Kaya

ABSTRACT

Premise and consequent parameters of ANFIS are optimized by an optimization algorithm in its training process. A successful optimization algorithm should be utilized for an effective training process. In this study, an adaptive and hybrid artificial bee colony (aABC) algorithm, which is one of the variants of ABC algorithm, is employed in ANFIS training. aABC algorithm uses arithmetic crossover and adaptive neighborhood radius in the solution generating mechanism. aABC algorithm has gained the ability to obtain fast convergence and quality solution with these two control parameters. ANFIS is trained using aABC algorithm to obtain better solutions according to standard ABC algorithm. Firstly, five nonlinear static test systems are utilized for performance analysis of aABC algorithm. With aABC algorithm, performance increases up to about 16% compared to standard ABC algorithm. At the same time, better convergence is obtained in all examples. Wilcoxon signed rank test is applied to determine significance of the results. In addition, the results reached by aABC algorithm are compared with GA, PSO, HS algorithms and more effective results are found with aABC algorithm. As a result, it is seen that aABC algorithm is more successful than ABC, GA, PSO and HS in ANFIS training for identification of nonlinear static systems. Secondly, ANFIS is also trained by utilizing aABC algorithm for solving a real-world problem. Estimating number of foreign visitors coming to Turkey is selected as a real-world problem. The results obtained are compared standard with standard ABC algorithm, and more successful results are found by aABC algorithm. More... »

PAGES

3531-3547

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s13369-018-3562-y

DOI

http://dx.doi.org/10.1007/s13369-018-3562-y

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1107306364


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Erciyes University", 
          "id": "https://www.grid.ac/institutes/grid.411739.9", 
          "name": [
            "Department of Computer Engineering, Engineering Faculty, Erciyes University, 38039, Kayseri, Turkey"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Karaboga", 
        "givenName": "Dervis", 
        "id": "sg:person.07631373317.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07631373317.17"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nev\u015fehir Hac\u0131 Bekta\u015f Veli University", 
          "id": "https://www.grid.ac/institutes/grid.449442.b", 
          "name": [
            "Department of Computer Technologies, Nevsehir Vocational College, Nevsehir Haci Bektas Veli University, 50300, Nevsehir, Turkey"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kaya", 
        "givenName": "Ebubekir", 
        "id": "sg:person.016436414035.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016436414035.16"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s0165-0114(98)00169-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006365370"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10015-010-0782-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012708108", 
          "https://doi.org/10.1007/s10015-010-0782-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10015-010-0782-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012708108", 
          "https://doi.org/10.1007/s10015-010-0782-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eswa.2010.04.045", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013100442"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0165-0114(95)00251-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014061285"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.bspc.2011.09.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015942307"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12293-015-0160-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020102060", 
          "https://doi.org/10.1007/s12293-015-0160-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.asoc.2013.10.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023983536"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/0952813x.2015.1020571", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025164588"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eswa.2009.06.032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031185469"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.asoc.2016.07.053", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034685522"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.asoc.2016.07.039", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035404621"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s13369-016-2279-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036077424", 
          "https://doi.org/10.1007/s13369-016-2279-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s13369-016-2279-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036077424", 
          "https://doi.org/10.1007/s13369-016-2279-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00500-016-2321-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039341275", 
          "https://doi.org/10.1007/s00500-016-2321-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00500-016-2321-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039341275", 
          "https://doi.org/10.1007/s00500-016-2321-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.asoc.2016.01.027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040924535"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compfluid.2013.04.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041282055"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10898-007-9149-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049543869", 
          "https://doi.org/10.1007/s10898-007-9149-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10898-007-9149-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049543869", 
          "https://doi.org/10.1007/s10898-007-9149-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1049/iet-ifs.2010.0041", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056828525"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1049/iet-ifs.2010.0041", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056828525"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/12.106218", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061087231"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/21.256541", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061121711"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/72.159061", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061218278"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/91.660805", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061247854"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tfuzz.2011.2130529", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061606453"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.11591/ijeecs.v3.i2.pp249-263", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063285963"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.14257/ijseia.2016.10.6.13", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067238458"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.14257/ijseia.2016.10.6.13", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067238458"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/10916466.2016.1252773", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084164244"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3906/elk-1601-240", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085869272"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icnn.1993.298575", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086295632"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jclepro.2017.07.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090342437"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/socpar.2009.95", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094180973"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icngis.2016.7854013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094442754"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/isie.2006.295729", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094644422"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cis.2012.159", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094883956"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/melcon.2012.6196486", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094955117"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icsec.2013.6694798", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095021488"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/inista.2013.6577625", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095021595"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icccnt.2012.6396065", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095197664"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/etfa.2011.6059079", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095220445"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/ascc.2015.7244638", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095354509"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/siu.2014.6830273", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095482818"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10462-017-9610-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100163009", 
          "https://doi.org/10.1007/s10462-017-9610-2"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-04", 
    "datePublishedReg": "2019-04-01", 
    "description": "Premise and consequent parameters of ANFIS are optimized by an optimization algorithm in its training process. A successful optimization algorithm should be utilized for an effective training process. In this study, an adaptive and hybrid artificial bee colony (aABC) algorithm, which is one of the variants of ABC algorithm, is employed in ANFIS training. aABC algorithm uses arithmetic crossover and adaptive neighborhood radius in the solution generating mechanism. aABC algorithm has gained the ability to obtain fast convergence and quality solution with these two control parameters. ANFIS is trained using aABC algorithm to obtain better solutions according to standard ABC algorithm. Firstly, five nonlinear static test systems are utilized for performance analysis of aABC algorithm. With aABC algorithm, performance increases up to about 16% compared to standard ABC algorithm. At the same time, better convergence is obtained in all examples. Wilcoxon signed rank test is applied to determine significance of the results. In addition, the results reached by aABC algorithm are compared with GA, PSO, HS algorithms and more effective results are found with aABC algorithm. As a result, it is seen that aABC algorithm is more successful than ABC, GA, PSO and HS in ANFIS training for identification of nonlinear static systems. Secondly, ANFIS is also trained by utilizing aABC algorithm for solving a real-world problem. Estimating number of foreign visitors coming to Turkey is selected as a real-world problem. The results obtained are compared standard with standard ABC algorithm, and more successful results are found by aABC algorithm.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s13369-018-3562-y", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136851", 
        "issn": [
          "2193-567X", 
          "2191-4281"
        ], 
        "name": "Arabian Journal for Science and Engineering", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "44"
      }
    ], 
    "name": "Training ANFIS by Using an Adaptive and Hybrid Artificial Bee Colony Algorithm (aABC) for the Identification of Nonlinear Static Systems", 
    "pagination": "3531-3547", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "aa7d9602f960e7445390c01c31ed663125b80418c33ce7eb6fa702c7a6fc93dc"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s13369-018-3562-y"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1107306364"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s13369-018-3562-y", 
      "https://app.dimensions.ai/details/publication/pub.1107306364"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:44", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000363_0000000363/records_70066_00000003.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs13369-018-3562-y"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s13369-018-3562-y'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s13369-018-3562-y'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s13369-018-3562-y'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s13369-018-3562-y'


 

This table displays all metadata directly associated to this object as RDF triples.

197 TRIPLES      21 PREDICATES      67 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s13369-018-3562-y schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Nd545094b2a884716a52d5e6ef1500e54
4 schema:citation sg:pub.10.1007/s00500-016-2321-9
5 sg:pub.10.1007/s10015-010-0782-y
6 sg:pub.10.1007/s10462-017-9610-2
7 sg:pub.10.1007/s10898-007-9149-x
8 sg:pub.10.1007/s12293-015-0160-3
9 sg:pub.10.1007/s13369-016-2279-z
10 https://doi.org/10.1016/0165-0114(95)00251-0
11 https://doi.org/10.1016/j.asoc.2013.10.014
12 https://doi.org/10.1016/j.asoc.2016.01.027
13 https://doi.org/10.1016/j.asoc.2016.07.039
14 https://doi.org/10.1016/j.asoc.2016.07.053
15 https://doi.org/10.1016/j.bspc.2011.09.004
16 https://doi.org/10.1016/j.compfluid.2013.04.018
17 https://doi.org/10.1016/j.eswa.2009.06.032
18 https://doi.org/10.1016/j.eswa.2010.04.045
19 https://doi.org/10.1016/j.jclepro.2017.07.007
20 https://doi.org/10.1016/s0165-0114(98)00169-9
21 https://doi.org/10.1049/iet-ifs.2010.0041
22 https://doi.org/10.1080/0952813x.2015.1020571
23 https://doi.org/10.1080/10916466.2016.1252773
24 https://doi.org/10.1109/12.106218
25 https://doi.org/10.1109/21.256541
26 https://doi.org/10.1109/72.159061
27 https://doi.org/10.1109/91.660805
28 https://doi.org/10.1109/ascc.2015.7244638
29 https://doi.org/10.1109/cis.2012.159
30 https://doi.org/10.1109/etfa.2011.6059079
31 https://doi.org/10.1109/icccnt.2012.6396065
32 https://doi.org/10.1109/icngis.2016.7854013
33 https://doi.org/10.1109/icnn.1993.298575
34 https://doi.org/10.1109/icsec.2013.6694798
35 https://doi.org/10.1109/inista.2013.6577625
36 https://doi.org/10.1109/isie.2006.295729
37 https://doi.org/10.1109/melcon.2012.6196486
38 https://doi.org/10.1109/siu.2014.6830273
39 https://doi.org/10.1109/socpar.2009.95
40 https://doi.org/10.1109/tfuzz.2011.2130529
41 https://doi.org/10.11591/ijeecs.v3.i2.pp249-263
42 https://doi.org/10.14257/ijseia.2016.10.6.13
43 https://doi.org/10.3906/elk-1601-240
44 schema:datePublished 2019-04
45 schema:datePublishedReg 2019-04-01
46 schema:description Premise and consequent parameters of ANFIS are optimized by an optimization algorithm in its training process. A successful optimization algorithm should be utilized for an effective training process. In this study, an adaptive and hybrid artificial bee colony (aABC) algorithm, which is one of the variants of ABC algorithm, is employed in ANFIS training. aABC algorithm uses arithmetic crossover and adaptive neighborhood radius in the solution generating mechanism. aABC algorithm has gained the ability to obtain fast convergence and quality solution with these two control parameters. ANFIS is trained using aABC algorithm to obtain better solutions according to standard ABC algorithm. Firstly, five nonlinear static test systems are utilized for performance analysis of aABC algorithm. With aABC algorithm, performance increases up to about 16% compared to standard ABC algorithm. At the same time, better convergence is obtained in all examples. Wilcoxon signed rank test is applied to determine significance of the results. In addition, the results reached by aABC algorithm are compared with GA, PSO, HS algorithms and more effective results are found with aABC algorithm. As a result, it is seen that aABC algorithm is more successful than ABC, GA, PSO and HS in ANFIS training for identification of nonlinear static systems. Secondly, ANFIS is also trained by utilizing aABC algorithm for solving a real-world problem. Estimating number of foreign visitors coming to Turkey is selected as a real-world problem. The results obtained are compared standard with standard ABC algorithm, and more successful results are found by aABC algorithm.
47 schema:genre research_article
48 schema:inLanguage en
49 schema:isAccessibleForFree false
50 schema:isPartOf N5828776f19d8466d8e0d65bfb8dd43e4
51 Nf1f2c107a150483691ab32c6d3861f71
52 sg:journal.1136851
53 schema:name Training ANFIS by Using an Adaptive and Hybrid Artificial Bee Colony Algorithm (aABC) for the Identification of Nonlinear Static Systems
54 schema:pagination 3531-3547
55 schema:productId N66b2381253f84c9db6dfc9fd37477f8b
56 N84290cdd13e84c65b39979724645cf3c
57 Na1c8241ab224473ab97bd609c7772887
58 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107306364
59 https://doi.org/10.1007/s13369-018-3562-y
60 schema:sdDatePublished 2019-04-11T12:44
61 schema:sdLicense https://scigraph.springernature.com/explorer/license/
62 schema:sdPublisher N46a749de346c4000809963ef646d771a
63 schema:url https://link.springer.com/10.1007%2Fs13369-018-3562-y
64 sgo:license sg:explorer/license/
65 sgo:sdDataset articles
66 rdf:type schema:ScholarlyArticle
67 N46a749de346c4000809963ef646d771a schema:name Springer Nature - SN SciGraph project
68 rdf:type schema:Organization
69 N5828776f19d8466d8e0d65bfb8dd43e4 schema:volumeNumber 44
70 rdf:type schema:PublicationVolume
71 N66b2381253f84c9db6dfc9fd37477f8b schema:name doi
72 schema:value 10.1007/s13369-018-3562-y
73 rdf:type schema:PropertyValue
74 N69b5869229a3413980c3fa8d656620fc rdf:first sg:person.016436414035.16
75 rdf:rest rdf:nil
76 N84290cdd13e84c65b39979724645cf3c schema:name readcube_id
77 schema:value aa7d9602f960e7445390c01c31ed663125b80418c33ce7eb6fa702c7a6fc93dc
78 rdf:type schema:PropertyValue
79 Na1c8241ab224473ab97bd609c7772887 schema:name dimensions_id
80 schema:value pub.1107306364
81 rdf:type schema:PropertyValue
82 Nd545094b2a884716a52d5e6ef1500e54 rdf:first sg:person.07631373317.17
83 rdf:rest N69b5869229a3413980c3fa8d656620fc
84 Nf1f2c107a150483691ab32c6d3861f71 schema:issueNumber 4
85 rdf:type schema:PublicationIssue
86 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
87 schema:name Information and Computing Sciences
88 rdf:type schema:DefinedTerm
89 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
90 schema:name Artificial Intelligence and Image Processing
91 rdf:type schema:DefinedTerm
92 sg:journal.1136851 schema:issn 2191-4281
93 2193-567X
94 schema:name Arabian Journal for Science and Engineering
95 rdf:type schema:Periodical
96 sg:person.016436414035.16 schema:affiliation https://www.grid.ac/institutes/grid.449442.b
97 schema:familyName Kaya
98 schema:givenName Ebubekir
99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016436414035.16
100 rdf:type schema:Person
101 sg:person.07631373317.17 schema:affiliation https://www.grid.ac/institutes/grid.411739.9
102 schema:familyName Karaboga
103 schema:givenName Dervis
104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07631373317.17
105 rdf:type schema:Person
106 sg:pub.10.1007/s00500-016-2321-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039341275
107 https://doi.org/10.1007/s00500-016-2321-9
108 rdf:type schema:CreativeWork
109 sg:pub.10.1007/s10015-010-0782-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1012708108
110 https://doi.org/10.1007/s10015-010-0782-y
111 rdf:type schema:CreativeWork
112 sg:pub.10.1007/s10462-017-9610-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100163009
113 https://doi.org/10.1007/s10462-017-9610-2
114 rdf:type schema:CreativeWork
115 sg:pub.10.1007/s10898-007-9149-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1049543869
116 https://doi.org/10.1007/s10898-007-9149-x
117 rdf:type schema:CreativeWork
118 sg:pub.10.1007/s12293-015-0160-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020102060
119 https://doi.org/10.1007/s12293-015-0160-3
120 rdf:type schema:CreativeWork
121 sg:pub.10.1007/s13369-016-2279-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1036077424
122 https://doi.org/10.1007/s13369-016-2279-z
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1016/0165-0114(95)00251-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014061285
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1016/j.asoc.2013.10.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023983536
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1016/j.asoc.2016.01.027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040924535
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1016/j.asoc.2016.07.039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035404621
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1016/j.asoc.2016.07.053 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034685522
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1016/j.bspc.2011.09.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015942307
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1016/j.compfluid.2013.04.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041282055
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1016/j.eswa.2009.06.032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031185469
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1016/j.eswa.2010.04.045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013100442
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1016/j.jclepro.2017.07.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090342437
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1016/s0165-0114(98)00169-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006365370
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1049/iet-ifs.2010.0041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056828525
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1080/0952813x.2015.1020571 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025164588
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1080/10916466.2016.1252773 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084164244
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1109/12.106218 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061087231
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1109/21.256541 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061121711
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1109/72.159061 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061218278
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1109/91.660805 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061247854
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1109/ascc.2015.7244638 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095354509
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1109/cis.2012.159 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094883956
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1109/etfa.2011.6059079 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095220445
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1109/icccnt.2012.6396065 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095197664
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1109/icngis.2016.7854013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094442754
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1109/icnn.1993.298575 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086295632
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1109/icsec.2013.6694798 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095021488
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1109/inista.2013.6577625 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095021595
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1109/isie.2006.295729 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094644422
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1109/melcon.2012.6196486 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094955117
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1109/siu.2014.6830273 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095482818
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1109/socpar.2009.95 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094180973
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1109/tfuzz.2011.2130529 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061606453
185 rdf:type schema:CreativeWork
186 https://doi.org/10.11591/ijeecs.v3.i2.pp249-263 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063285963
187 rdf:type schema:CreativeWork
188 https://doi.org/10.14257/ijseia.2016.10.6.13 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067238458
189 rdf:type schema:CreativeWork
190 https://doi.org/10.3906/elk-1601-240 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085869272
191 rdf:type schema:CreativeWork
192 https://www.grid.ac/institutes/grid.411739.9 schema:alternateName Erciyes University
193 schema:name Department of Computer Engineering, Engineering Faculty, Erciyes University, 38039, Kayseri, Turkey
194 rdf:type schema:Organization
195 https://www.grid.ac/institutes/grid.449442.b schema:alternateName Nevşehir Hacı Bektaş Veli University
196 schema:name Department of Computer Technologies, Nevsehir Vocational College, Nevsehir Haci Bektas Veli University, 50300, Nevsehir, Turkey
197 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...