Lung Cancer Classification Models Using Discriminant Information of Mutated Genes in Protein Amino Acids Sequences View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-04

AUTHORS

Mohsin Sattar, Abdul Majid

ABSTRACT

Lung cancer is a heterogeneous disease based on uncontrollable growth of cells. Lung cancer is major cause of cancer-related deaths. Early diagnosis of lung cancer is important for its treatment and survival of patients. In this study, through the statistical analysis of cancerous proteins sequences, we observed the mutated genes associated with etiology of lung cancer. Our analysis revealed most frequent mutated genes TP53, EGFR, KMT2D, PDE4DIP, ATM, ZNF521, DICER1, CTNNB1 RUNX1T1, SMARCA4, FBXW7, NF1, PIK3CA, STK11, NTRk3, APC, PTPRB, BRCA2, MYH11 and AMER1. We observed abnormal mutations in genes contributed toward variations in the composition of amino acid sequences. This variation was described in various feature spaces using statistical and physicochemical properties of amino acids. These influential features have provided sufficient discrimination power for the development of effective lung cancer classification models (LCCMs). The main advantage of proposed novel approach is the effective utilization of the discriminant information of mutated genes. Experimental results showed that SVM model has the best performance in split amino acid composition. In the study, we explored a new dimension of early lung cancer classification using discriminant information of mutated genes revealed through the statistical analysis of the mutated genes. It is anticipated that the proposed approach would be useful for practitioners and domain experts for early lung cancer diagnosis and prognosis. More... »

PAGES

3197-3211

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s13369-018-3468-8

DOI

http://dx.doi.org/10.1007/s13369-018-3468-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1105927644


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1112", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Oncology and Carcinogenesis", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Pakistan Institute of Engineering and Applied Sciences", 
          "id": "https://www.grid.ac/institutes/grid.420112.4", 
          "name": [
            "Biomedical Informatics Research Lab, Department of Computer and Information Sciences, Pakistan Institute of Engineering and Applied Sciences, P.O. Nilore, Islamabad, Pakistan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sattar", 
        "givenName": "Mohsin", 
        "id": "sg:person.01045213423.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01045213423.22"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Pakistan Institute of Engineering and Applied Sciences", 
          "id": "https://www.grid.ac/institutes/grid.420112.4", 
          "name": [
            "Biomedical Informatics Research Lab, Department of Computer and Information Sciences, Pakistan Institute of Engineering and Applied Sciences, P.O. Nilore, Islamabad, Pakistan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Majid", 
        "givenName": "Abdul", 
        "id": "sg:person.01362277372.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01362277372.18"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00726-014-1852-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004257147", 
          "https://doi.org/10.1007/s00726-014-1852-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40484-016-0081-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007674721", 
          "https://doi.org/10.1007/s40484-016-0081-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jbi.2015.01.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013844414"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3389/fgene.2016.00085", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016238855"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compbiomed.2013.07.024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017064627"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/b978-0-12-802121-7.00032-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018167508"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12859-015-0554-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018713720", 
          "https://doi.org/10.1186/s12859-015-0554-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12859-015-0554-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018713720", 
          "https://doi.org/10.1186/s12859-015-0554-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3109/10409239509083488", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022792436"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkw1099", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022885794"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/2193-1801-2-238", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023391779", 
          "https://doi.org/10.1186/2193-1801-2-238"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ccm.2011.09.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025675859"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.7314/apjcp.2014.15.7.3035", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029035604"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jtho.2016.12.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029059388"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.chest.2016.10.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029731734"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0058772", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030631378"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-16-s5-s10", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031132956", 
          "https://doi.org/10.1186/1471-2105-16-s5-s10"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmoldx.2012.03.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032063350"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ab.2006.07.022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032828519"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0161007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033693597"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00726-013-1659-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040402665", 
          "https://doi.org/10.1007/s00726-013-1659-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00726-013-1659-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040402665", 
          "https://doi.org/10.1007/s00726-013-1659-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkw1121", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041474443"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1172/jci68509", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041566772"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1172/jci68509", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041566772"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12032-014-0967-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042990152", 
          "https://doi.org/10.1007/s12032-014-0967-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-14-s8-s3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044897877", 
          "https://doi.org/10.1186/1471-2105-14-s8-s3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-14-s8-s3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044897877", 
          "https://doi.org/10.1186/1471-2105-14-s8-s3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jtbi.2008.11.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047011807"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cels.2015.12.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049710880"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13148-016-0292-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049865252", 
          "https://doi.org/10.1186/s13148-016-0292-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13148-016-0292-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049865252", 
          "https://doi.org/10.1186/s13148-016-0292-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2164-10-22", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051697715", 
          "https://doi.org/10.1186/1471-2164-10-22"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tnb.2013.2296978", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061714018"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/1055-9965.epi-15-0578", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063224193"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10552-017-0872-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084025408", 
          "https://doi.org/10.1007/s10552-017-0872-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10552-017-0872-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084025408", 
          "https://doi.org/10.1007/s10552-017-0872-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/0008-5472.can-17-0122", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085766336"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/0008-5472.can-17-0122", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085766336"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12929-017-0343-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086036519", 
          "https://doi.org/10.1186/s12929-017-0343-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12929-017-0343-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086036519", 
          "https://doi.org/10.1186/s12929-017-0343-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkx1098", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092368482"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3322/caac.21442", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100164642"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41416-018-0109-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103975495", 
          "https://doi.org/10.1038/s41416-018-0109-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41416-018-0109-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103975495", 
          "https://doi.org/10.1038/s41416-018-0109-7"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-04", 
    "datePublishedReg": "2019-04-01", 
    "description": "Lung cancer is a heterogeneous disease based on uncontrollable growth of cells. Lung cancer is major cause of cancer-related deaths. Early diagnosis of lung cancer is important for its treatment and survival of patients. In this study, through the statistical analysis of cancerous proteins sequences, we observed the mutated genes associated with etiology of lung cancer. Our analysis revealed most frequent mutated genes TP53, EGFR, KMT2D, PDE4DIP, ATM, ZNF521, DICER1, CTNNB1 RUNX1T1, SMARCA4, FBXW7, NF1, PIK3CA, STK11, NTRk3, APC, PTPRB, BRCA2, MYH11 and AMER1. We observed abnormal mutations in genes contributed toward variations in the composition of amino acid sequences. This variation was described in various feature spaces using statistical and physicochemical properties of amino acids. These influential features have provided sufficient discrimination power for the development of effective lung cancer classification models (LCCMs). The main advantage of proposed novel approach is the effective utilization of the discriminant information of mutated genes. Experimental results showed that SVM model has the best performance in split amino acid composition. In the study, we explored a new dimension of early lung cancer classification using discriminant information of mutated genes revealed through the statistical analysis of the mutated genes. It is anticipated that the proposed approach would be useful for practitioners and domain experts for early lung cancer diagnosis and prognosis.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s13369-018-3468-8", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136851", 
        "issn": [
          "2193-567X", 
          "2191-4281"
        ], 
        "name": "Arabian Journal for Science and Engineering", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "44"
      }
    ], 
    "name": "Lung Cancer Classification Models Using Discriminant Information of Mutated Genes in Protein Amino Acids Sequences", 
    "pagination": "3197-3211", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "7b81a70f660b92a52d6fac725da518500e54d634673a2cae7a907889cc3e5337"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s13369-018-3468-8"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1105927644"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s13369-018-3468-8", 
      "https://app.dimensions.ai/details/publication/pub.1105927644"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:38", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000363_0000000363/records_70040_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs13369-018-3468-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s13369-018-3468-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s13369-018-3468-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s13369-018-3468-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s13369-018-3468-8'


 

This table displays all metadata directly associated to this object as RDF triples.

189 TRIPLES      21 PREDICATES      63 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s13369-018-3468-8 schema:about anzsrc-for:11
2 anzsrc-for:1112
3 schema:author N5b1effc5cae2443783cc7e549ad6d408
4 schema:citation sg:pub.10.1007/s00726-013-1659-x
5 sg:pub.10.1007/s00726-014-1852-6
6 sg:pub.10.1007/s10552-017-0872-4
7 sg:pub.10.1007/s12032-014-0967-7
8 sg:pub.10.1007/s40484-016-0081-2
9 sg:pub.10.1038/s41416-018-0109-7
10 sg:pub.10.1186/1471-2105-14-s8-s3
11 sg:pub.10.1186/1471-2105-16-s5-s10
12 sg:pub.10.1186/1471-2164-10-22
13 sg:pub.10.1186/2193-1801-2-238
14 sg:pub.10.1186/s12859-015-0554-8
15 sg:pub.10.1186/s12929-017-0343-y
16 sg:pub.10.1186/s13148-016-0292-4
17 https://doi.org/10.1016/b978-0-12-802121-7.00032-7
18 https://doi.org/10.1016/j.ab.2006.07.022
19 https://doi.org/10.1016/j.ccm.2011.09.001
20 https://doi.org/10.1016/j.cels.2015.12.007
21 https://doi.org/10.1016/j.chest.2016.10.010
22 https://doi.org/10.1016/j.compbiomed.2013.07.024
23 https://doi.org/10.1016/j.jbi.2015.01.004
24 https://doi.org/10.1016/j.jmoldx.2012.03.004
25 https://doi.org/10.1016/j.jtbi.2008.11.017
26 https://doi.org/10.1016/j.jtho.2016.12.011
27 https://doi.org/10.1093/nar/gkw1099
28 https://doi.org/10.1093/nar/gkw1121
29 https://doi.org/10.1093/nar/gkx1098
30 https://doi.org/10.1109/tnb.2013.2296978
31 https://doi.org/10.1158/0008-5472.can-17-0122
32 https://doi.org/10.1158/1055-9965.epi-15-0578
33 https://doi.org/10.1172/jci68509
34 https://doi.org/10.1371/journal.pone.0058772
35 https://doi.org/10.1371/journal.pone.0161007
36 https://doi.org/10.3109/10409239509083488
37 https://doi.org/10.3322/caac.21442
38 https://doi.org/10.3389/fgene.2016.00085
39 https://doi.org/10.7314/apjcp.2014.15.7.3035
40 schema:datePublished 2019-04
41 schema:datePublishedReg 2019-04-01
42 schema:description Lung cancer is a heterogeneous disease based on uncontrollable growth of cells. Lung cancer is major cause of cancer-related deaths. Early diagnosis of lung cancer is important for its treatment and survival of patients. In this study, through the statistical analysis of cancerous proteins sequences, we observed the mutated genes associated with etiology of lung cancer. Our analysis revealed most frequent mutated genes TP53, EGFR, KMT2D, PDE4DIP, ATM, ZNF521, DICER1, CTNNB1 RUNX1T1, SMARCA4, FBXW7, NF1, PIK3CA, STK11, NTRk3, APC, PTPRB, BRCA2, MYH11 and AMER1. We observed abnormal mutations in genes contributed toward variations in the composition of amino acid sequences. This variation was described in various feature spaces using statistical and physicochemical properties of amino acids. These influential features have provided sufficient discrimination power for the development of effective lung cancer classification models (LCCMs). The main advantage of proposed novel approach is the effective utilization of the discriminant information of mutated genes. Experimental results showed that SVM model has the best performance in split amino acid composition. In the study, we explored a new dimension of early lung cancer classification using discriminant information of mutated genes revealed through the statistical analysis of the mutated genes. It is anticipated that the proposed approach would be useful for practitioners and domain experts for early lung cancer diagnosis and prognosis.
43 schema:genre research_article
44 schema:inLanguage en
45 schema:isAccessibleForFree false
46 schema:isPartOf N3a6a37a1956b48008dab5e98df3ff5d7
47 Nf66569a8e32c4261beacfb473cd4a7f9
48 sg:journal.1136851
49 schema:name Lung Cancer Classification Models Using Discriminant Information of Mutated Genes in Protein Amino Acids Sequences
50 schema:pagination 3197-3211
51 schema:productId N23b4afd3438f485c9ee75ea2e3c4616c
52 N419d69a6fc7e41978671898a42d0e788
53 Nd74884004e1542a5a631931ec409232b
54 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105927644
55 https://doi.org/10.1007/s13369-018-3468-8
56 schema:sdDatePublished 2019-04-11T12:38
57 schema:sdLicense https://scigraph.springernature.com/explorer/license/
58 schema:sdPublisher N6e88f993540346faa7526aad9224cf5c
59 schema:url https://link.springer.com/10.1007%2Fs13369-018-3468-8
60 sgo:license sg:explorer/license/
61 sgo:sdDataset articles
62 rdf:type schema:ScholarlyArticle
63 N23b4afd3438f485c9ee75ea2e3c4616c schema:name doi
64 schema:value 10.1007/s13369-018-3468-8
65 rdf:type schema:PropertyValue
66 N3a6a37a1956b48008dab5e98df3ff5d7 schema:issueNumber 4
67 rdf:type schema:PublicationIssue
68 N419d69a6fc7e41978671898a42d0e788 schema:name dimensions_id
69 schema:value pub.1105927644
70 rdf:type schema:PropertyValue
71 N5b1effc5cae2443783cc7e549ad6d408 rdf:first sg:person.01045213423.22
72 rdf:rest N6aed780080654758a39f7369582a70b5
73 N6aed780080654758a39f7369582a70b5 rdf:first sg:person.01362277372.18
74 rdf:rest rdf:nil
75 N6e88f993540346faa7526aad9224cf5c schema:name Springer Nature - SN SciGraph project
76 rdf:type schema:Organization
77 Nd74884004e1542a5a631931ec409232b schema:name readcube_id
78 schema:value 7b81a70f660b92a52d6fac725da518500e54d634673a2cae7a907889cc3e5337
79 rdf:type schema:PropertyValue
80 Nf66569a8e32c4261beacfb473cd4a7f9 schema:volumeNumber 44
81 rdf:type schema:PublicationVolume
82 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
83 schema:name Medical and Health Sciences
84 rdf:type schema:DefinedTerm
85 anzsrc-for:1112 schema:inDefinedTermSet anzsrc-for:
86 schema:name Oncology and Carcinogenesis
87 rdf:type schema:DefinedTerm
88 sg:journal.1136851 schema:issn 2191-4281
89 2193-567X
90 schema:name Arabian Journal for Science and Engineering
91 rdf:type schema:Periodical
92 sg:person.01045213423.22 schema:affiliation https://www.grid.ac/institutes/grid.420112.4
93 schema:familyName Sattar
94 schema:givenName Mohsin
95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01045213423.22
96 rdf:type schema:Person
97 sg:person.01362277372.18 schema:affiliation https://www.grid.ac/institutes/grid.420112.4
98 schema:familyName Majid
99 schema:givenName Abdul
100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01362277372.18
101 rdf:type schema:Person
102 sg:pub.10.1007/s00726-013-1659-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1040402665
103 https://doi.org/10.1007/s00726-013-1659-x
104 rdf:type schema:CreativeWork
105 sg:pub.10.1007/s00726-014-1852-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004257147
106 https://doi.org/10.1007/s00726-014-1852-6
107 rdf:type schema:CreativeWork
108 sg:pub.10.1007/s10552-017-0872-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084025408
109 https://doi.org/10.1007/s10552-017-0872-4
110 rdf:type schema:CreativeWork
111 sg:pub.10.1007/s12032-014-0967-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042990152
112 https://doi.org/10.1007/s12032-014-0967-7
113 rdf:type schema:CreativeWork
114 sg:pub.10.1007/s40484-016-0081-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007674721
115 https://doi.org/10.1007/s40484-016-0081-2
116 rdf:type schema:CreativeWork
117 sg:pub.10.1038/s41416-018-0109-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103975495
118 https://doi.org/10.1038/s41416-018-0109-7
119 rdf:type schema:CreativeWork
120 sg:pub.10.1186/1471-2105-14-s8-s3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044897877
121 https://doi.org/10.1186/1471-2105-14-s8-s3
122 rdf:type schema:CreativeWork
123 sg:pub.10.1186/1471-2105-16-s5-s10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031132956
124 https://doi.org/10.1186/1471-2105-16-s5-s10
125 rdf:type schema:CreativeWork
126 sg:pub.10.1186/1471-2164-10-22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051697715
127 https://doi.org/10.1186/1471-2164-10-22
128 rdf:type schema:CreativeWork
129 sg:pub.10.1186/2193-1801-2-238 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023391779
130 https://doi.org/10.1186/2193-1801-2-238
131 rdf:type schema:CreativeWork
132 sg:pub.10.1186/s12859-015-0554-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018713720
133 https://doi.org/10.1186/s12859-015-0554-8
134 rdf:type schema:CreativeWork
135 sg:pub.10.1186/s12929-017-0343-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1086036519
136 https://doi.org/10.1186/s12929-017-0343-y
137 rdf:type schema:CreativeWork
138 sg:pub.10.1186/s13148-016-0292-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049865252
139 https://doi.org/10.1186/s13148-016-0292-4
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1016/b978-0-12-802121-7.00032-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018167508
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1016/j.ab.2006.07.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032828519
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1016/j.ccm.2011.09.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025675859
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1016/j.cels.2015.12.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049710880
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1016/j.chest.2016.10.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029731734
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1016/j.compbiomed.2013.07.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017064627
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1016/j.jbi.2015.01.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013844414
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1016/j.jmoldx.2012.03.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032063350
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1016/j.jtbi.2008.11.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047011807
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1016/j.jtho.2016.12.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029059388
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1093/nar/gkw1099 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022885794
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1093/nar/gkw1121 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041474443
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1093/nar/gkx1098 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092368482
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1109/tnb.2013.2296978 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061714018
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1158/0008-5472.can-17-0122 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085766336
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1158/1055-9965.epi-15-0578 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063224193
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1172/jci68509 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041566772
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1371/journal.pone.0058772 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030631378
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1371/journal.pone.0161007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033693597
178 rdf:type schema:CreativeWork
179 https://doi.org/10.3109/10409239509083488 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022792436
180 rdf:type schema:CreativeWork
181 https://doi.org/10.3322/caac.21442 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100164642
182 rdf:type schema:CreativeWork
183 https://doi.org/10.3389/fgene.2016.00085 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016238855
184 rdf:type schema:CreativeWork
185 https://doi.org/10.7314/apjcp.2014.15.7.3035 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029035604
186 rdf:type schema:CreativeWork
187 https://www.grid.ac/institutes/grid.420112.4 schema:alternateName Pakistan Institute of Engineering and Applied Sciences
188 schema:name Biomedical Informatics Research Lab, Department of Computer and Information Sciences, Pakistan Institute of Engineering and Applied Sciences, P.O. Nilore, Islamabad, Pakistan
189 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...