Ontology type: schema:ScholarlyArticle
2017-05-02
AUTHORSZhou Wang, Xiangqian Shen, Maoxiang Jing
ABSTRACTExcess fluoride in drinking water hazarded people health, so we have undertaken to develop a nanoscale FeOOH/γ-Al2O3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {FeOOH}/{\upgamma }\hbox {-Al}_{2}\hbox {O}_{3}$$\end{document} absorbent to remove fluoride in drinking water. The as-prepared nanoscale FeOOH/γ-Al2O3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {FeOOH}/{\upgamma }\hbox {-Al}_{2}\hbox {O}_{3}$$\end{document} absorbent was characterized by transmission electron microscopy, surface area analyzer, and X-ray diffraction. Herein, we explored the effect of pH of solution, concentration of initial fluoride, contact time, and temperature on defluoride efficiency. The results showed the composite owned to further adherence to defluoride, compared to spherical and mesoporous alumina granules. The experiment data were fit with different models and assessed by regression coefficient (R2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(R^{2})$$\end{document}; the pseudo-second-order model was used to explain the adsorption process. The adsorption mechanism can be explained by a proton shifting mechanism. More... »
PAGES4417-4425
http://scigraph.springernature.com/pub.10.1007/s13369-017-2520-4
DOIhttp://dx.doi.org/10.1007/s13369-017-2520-4
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1085107250
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Engineering",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0905",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Civil Engineering",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Materials Engineering",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Institute for Advanced Materials, Jiangsu University, 212013, Zhenjiang, China",
"id": "http://www.grid.ac/institutes/grid.440785.a",
"name": [
"Institute for Adventure Materials, Jiangsu University, 212013, Zhenjiang, China",
"Zhengzhou Non-ferrous Metal Research Institute Co., Ltd of CHALCO, 450041, Zhengzhou, China",
"Institute for Advanced Materials, Jiangsu University, 212013, Zhenjiang, China"
],
"type": "Organization"
},
"familyName": "Wang",
"givenName": "Zhou",
"id": "sg:person.016650620457.49",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016650620457.49"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Institute for Adventure Materials, Jiangsu University, 212013, Zhenjiang, China",
"id": "http://www.grid.ac/institutes/grid.440785.a",
"name": [
"Institute for Adventure Materials, Jiangsu University, 212013, Zhenjiang, China"
],
"type": "Organization"
},
"familyName": "Shen",
"givenName": "Xiangqian",
"id": "sg:person.0601655670.06",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0601655670.06"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Institute for Adventure Materials, Jiangsu University, 212013, Zhenjiang, China",
"id": "http://www.grid.ac/institutes/grid.440785.a",
"name": [
"Institute for Adventure Materials, Jiangsu University, 212013, Zhenjiang, China"
],
"type": "Organization"
},
"familyName": "Jing",
"givenName": "Maoxiang",
"id": "sg:person.01162236364.13",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01162236364.13"
],
"type": "Person"
}
],
"datePublished": "2017-05-02",
"datePublishedReg": "2017-05-02",
"description": "Excess fluoride in drinking water hazarded people health, so we have undertaken to develop a nanoscale FeOOH/\u03b3-Al2O3\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\hbox {FeOOH}/{\\upgamma }\\hbox {-Al}_{2}\\hbox {O}_{3}$$\\end{document} absorbent to remove fluoride in drinking water. The as-prepared nanoscale FeOOH/\u03b3-Al2O3\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\hbox {FeOOH}/{\\upgamma }\\hbox {-Al}_{2}\\hbox {O}_{3}$$\\end{document} absorbent was characterized by transmission electron microscopy, surface area analyzer, and X-ray diffraction. Herein, we explored the effect of pH of solution, concentration of initial fluoride, contact time, and temperature on defluoride efficiency. The results showed the composite owned to further adherence to defluoride, compared to spherical and mesoporous alumina granules. The experiment data were fit with different models and assessed by regression coefficient (R2)\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$(R^{2})$$\\end{document}; the pseudo-second-order model was used to explain the adsorption process. The adsorption mechanism can be explained by a proton shifting mechanism.",
"genre": "article",
"id": "sg:pub.10.1007/s13369-017-2520-4",
"inLanguage": "en",
"isAccessibleForFree": false,
"isFundedItemOf": [
{
"id": "sg:grant.7174762",
"type": "MonetaryGrant"
}
],
"isPartOf": [
{
"id": "sg:journal.1372786",
"issn": [
"0377-9211",
"2191-4281"
],
"name": "Arabian Journal for Science and Engineering",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "10",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "42"
}
],
"keywords": [
"FeOOH/\u03b3",
"surface area analyzer",
"alumina granules",
"initial fluoride",
"adsorption process",
"transmission electron microscopy",
"order model",
"adsorption mechanism",
"contact time",
"experiment data",
"ray diffraction",
"electron microscopy",
"absorbent",
"shifting mechanism",
"composites",
"excess fluoride",
"water",
"Al2O3",
"temperature",
"diffraction",
"fluoride",
"efficiency",
"different models",
"performance",
"microscopy",
"coefficient",
"analyzer",
"model",
"drinking water",
"solution",
"enhancement",
"Herein",
"further adherence",
"process",
"mechanism",
"results",
"time",
"effect",
"concentration",
"regression coefficients",
"granules",
"people's health",
"data",
"health",
"adherence"
],
"name": "Enhancement of Defluoride Performance of the Spherical FeOOH/\u03b3-Al2O3",
"pagination": "4417-4425",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1085107250"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s13369-017-2520-4"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s13369-017-2520-4",
"https://app.dimensions.ai/details/publication/pub.1085107250"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-20T07:33",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_736.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/s13369-017-2520-4"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s13369-017-2520-4'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s13369-017-2520-4'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s13369-017-2520-4'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s13369-017-2520-4'
This table displays all metadata directly associated to this object as RDF triples.
126 TRIPLES
21 PREDICATES
71 URIs
62 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/s13369-017-2520-4 | schema:about | anzsrc-for:09 |
2 | ″ | ″ | anzsrc-for:0905 |
3 | ″ | ″ | anzsrc-for:0912 |
4 | ″ | schema:author | Nb4141ad452c6466eab451eedc4244091 |
5 | ″ | schema:datePublished | 2017-05-02 |
6 | ″ | schema:datePublishedReg | 2017-05-02 |
7 | ″ | schema:description | Excess fluoride in drinking water hazarded people health, so we have undertaken to develop a nanoscale FeOOH/γ-Al2O3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {FeOOH}/{\upgamma }\hbox {-Al}_{2}\hbox {O}_{3}$$\end{document} absorbent to remove fluoride in drinking water. The as-prepared nanoscale FeOOH/γ-Al2O3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {FeOOH}/{\upgamma }\hbox {-Al}_{2}\hbox {O}_{3}$$\end{document} absorbent was characterized by transmission electron microscopy, surface area analyzer, and X-ray diffraction. Herein, we explored the effect of pH of solution, concentration of initial fluoride, contact time, and temperature on defluoride efficiency. The results showed the composite owned to further adherence to defluoride, compared to spherical and mesoporous alumina granules. The experiment data were fit with different models and assessed by regression coefficient (R2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(R^{2})$$\end{document}; the pseudo-second-order model was used to explain the adsorption process. The adsorption mechanism can be explained by a proton shifting mechanism. |
8 | ″ | schema:genre | article |
9 | ″ | schema:inLanguage | en |
10 | ″ | schema:isAccessibleForFree | false |
11 | ″ | schema:isPartOf | N4ab9278b286e4125a5533dafc1405b8b |
12 | ″ | ″ | Nc872794c2d2946de86b341ece5a33481 |
13 | ″ | ″ | sg:journal.1372786 |
14 | ″ | schema:keywords | Al2O3 |
15 | ″ | ″ | FeOOH/γ |
16 | ″ | ″ | Herein |
17 | ″ | ″ | absorbent |
18 | ″ | ″ | adherence |
19 | ″ | ″ | adsorption mechanism |
20 | ″ | ″ | adsorption process |
21 | ″ | ″ | alumina granules |
22 | ″ | ″ | analyzer |
23 | ″ | ″ | coefficient |
24 | ″ | ″ | composites |
25 | ″ | ″ | concentration |
26 | ″ | ″ | contact time |
27 | ″ | ″ | data |
28 | ″ | ″ | different models |
29 | ″ | ″ | diffraction |
30 | ″ | ″ | drinking water |
31 | ″ | ″ | effect |
32 | ″ | ″ | efficiency |
33 | ″ | ″ | electron microscopy |
34 | ″ | ″ | enhancement |
35 | ″ | ″ | excess fluoride |
36 | ″ | ″ | experiment data |
37 | ″ | ″ | fluoride |
38 | ″ | ″ | further adherence |
39 | ″ | ″ | granules |
40 | ″ | ″ | health |
41 | ″ | ″ | initial fluoride |
42 | ″ | ″ | mechanism |
43 | ″ | ″ | microscopy |
44 | ″ | ″ | model |
45 | ″ | ″ | order model |
46 | ″ | ″ | people's health |
47 | ″ | ″ | performance |
48 | ″ | ″ | process |
49 | ″ | ″ | ray diffraction |
50 | ″ | ″ | regression coefficients |
51 | ″ | ″ | results |
52 | ″ | ″ | shifting mechanism |
53 | ″ | ″ | solution |
54 | ″ | ″ | surface area analyzer |
55 | ″ | ″ | temperature |
56 | ″ | ″ | time |
57 | ″ | ″ | transmission electron microscopy |
58 | ″ | ″ | water |
59 | ″ | schema:name | Enhancement of Defluoride Performance of the Spherical FeOOH/γ-Al2O3 |
60 | ″ | schema:pagination | 4417-4425 |
61 | ″ | schema:productId | Nad8f433dd3f549be95845f56166e3021 |
62 | ″ | ″ | Nc9b71195573b4f638cd72ddbece1eb42 |
63 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1085107250 |
64 | ″ | ″ | https://doi.org/10.1007/s13369-017-2520-4 |
65 | ″ | schema:sdDatePublished | 2022-05-20T07:33 |
66 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
67 | ″ | schema:sdPublisher | N77c6027db90046aca20ff97e55481962 |
68 | ″ | schema:url | https://doi.org/10.1007/s13369-017-2520-4 |
69 | ″ | sgo:license | sg:explorer/license/ |
70 | ″ | sgo:sdDataset | articles |
71 | ″ | rdf:type | schema:ScholarlyArticle |
72 | N4ab9278b286e4125a5533dafc1405b8b | schema:volumeNumber | 42 |
73 | ″ | rdf:type | schema:PublicationVolume |
74 | N69c6c4854dfd47be8eb47ece8e77c148 | rdf:first | sg:person.01162236364.13 |
75 | ″ | rdf:rest | rdf:nil |
76 | N77c6027db90046aca20ff97e55481962 | schema:name | Springer Nature - SN SciGraph project |
77 | ″ | rdf:type | schema:Organization |
78 | Nad8f433dd3f549be95845f56166e3021 | schema:name | dimensions_id |
79 | ″ | schema:value | pub.1085107250 |
80 | ″ | rdf:type | schema:PropertyValue |
81 | Nb4141ad452c6466eab451eedc4244091 | rdf:first | sg:person.016650620457.49 |
82 | ″ | rdf:rest | Nf81deb9263ea4f8981c65737a2efbff8 |
83 | Nc872794c2d2946de86b341ece5a33481 | schema:issueNumber | 10 |
84 | ″ | rdf:type | schema:PublicationIssue |
85 | Nc9b71195573b4f638cd72ddbece1eb42 | schema:name | doi |
86 | ″ | schema:value | 10.1007/s13369-017-2520-4 |
87 | ″ | rdf:type | schema:PropertyValue |
88 | Nf81deb9263ea4f8981c65737a2efbff8 | rdf:first | sg:person.0601655670.06 |
89 | ″ | rdf:rest | N69c6c4854dfd47be8eb47ece8e77c148 |
90 | anzsrc-for:09 | schema:inDefinedTermSet | anzsrc-for: |
91 | ″ | schema:name | Engineering |
92 | ″ | rdf:type | schema:DefinedTerm |
93 | anzsrc-for:0905 | schema:inDefinedTermSet | anzsrc-for: |
94 | ″ | schema:name | Civil Engineering |
95 | ″ | rdf:type | schema:DefinedTerm |
96 | anzsrc-for:0912 | schema:inDefinedTermSet | anzsrc-for: |
97 | ″ | schema:name | Materials Engineering |
98 | ″ | rdf:type | schema:DefinedTerm |
99 | sg:grant.7174762 | http://pending.schema.org/fundedItem | sg:pub.10.1007/s13369-017-2520-4 |
100 | ″ | rdf:type | schema:MonetaryGrant |
101 | sg:journal.1372786 | schema:issn | 0377-9211 |
102 | ″ | ″ | 2191-4281 |
103 | ″ | schema:name | Arabian Journal for Science and Engineering |
104 | ″ | schema:publisher | Springer Nature |
105 | ″ | rdf:type | schema:Periodical |
106 | sg:person.01162236364.13 | schema:affiliation | grid-institutes:grid.440785.a |
107 | ″ | schema:familyName | Jing |
108 | ″ | schema:givenName | Maoxiang |
109 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01162236364.13 |
110 | ″ | rdf:type | schema:Person |
111 | sg:person.016650620457.49 | schema:affiliation | grid-institutes:grid.440785.a |
112 | ″ | schema:familyName | Wang |
113 | ″ | schema:givenName | Zhou |
114 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016650620457.49 |
115 | ″ | rdf:type | schema:Person |
116 | sg:person.0601655670.06 | schema:affiliation | grid-institutes:grid.440785.a |
117 | ″ | schema:familyName | Shen |
118 | ″ | schema:givenName | Xiangqian |
119 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0601655670.06 |
120 | ″ | rdf:type | schema:Person |
121 | grid-institutes:grid.440785.a | schema:alternateName | Institute for Advanced Materials, Jiangsu University, 212013, Zhenjiang, China |
122 | ″ | ″ | Institute for Adventure Materials, Jiangsu University, 212013, Zhenjiang, China |
123 | ″ | schema:name | Institute for Advanced Materials, Jiangsu University, 212013, Zhenjiang, China |
124 | ″ | ″ | Institute for Adventure Materials, Jiangsu University, 212013, Zhenjiang, China |
125 | ″ | ″ | Zhengzhou Non-ferrous Metal Research Institute Co., Ltd of CHALCO, 450041, Zhengzhou, China |
126 | ″ | rdf:type | schema:Organization |