Flow Behavior of Lead-Free Machinable Brass During Hot Compression Deformation View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2014-12

AUTHORS

Gan Chunlei, Zheng Kaihong, Wang Haiyan, Qi Wenjun, Zhou Nan

ABSTRACT

Hot compression tests were carried out to study the deformation behaviors of a lead-free machinable brass using Gleeble-1500 thermal simulator in the temperature range of 823–973K and the strain rate range of 0.01–10 s−1. The results show that the flow behavior of the lead-free machinable brass is strongly influenced by strain rate and temperature, and the flow stress increases with increasing strain rate and decreasing temperature. The constitutive equations incorporating the effects of strain rate and temperature have been established to model the hot deformation behavior of this alloy. The reliability of the developed constitutive model was demonstrated by the mean percentage error of 10.82 % and the correlation coefficient of 0.98. Moreover, the flow stability/instability of the lead-free machinable brass was carefully investigated on the basis of dynamic material modeling approach. It was found that plastic deformation was stable for processing conditions in which the strain rate range was 1–10 s−1 within the temperature range of 823–923 K. More... »

PAGES

9093-9100

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s13369-014-1456-1

DOI

http://dx.doi.org/10.1007/s13369-014-1456-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1048386137


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Guangzhou Research Institute of Non-ferrous Metals", 
          "id": "https://www.grid.ac/institutes/grid.464312.6", 
          "name": [
            "Guangzhou Research Institute of Non-ferrous Metals, 510650, Guangzhou, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chunlei", 
        "givenName": "Gan", 
        "id": "sg:person.012353200140.78", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012353200140.78"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Guangzhou Research Institute of Non-ferrous Metals", 
          "id": "https://www.grid.ac/institutes/grid.464312.6", 
          "name": [
            "Guangzhou Research Institute of Non-ferrous Metals, 510650, Guangzhou, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kaihong", 
        "givenName": "Zheng", 
        "id": "sg:person.015700035331.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015700035331.02"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Guangzhou Research Institute of Non-ferrous Metals", 
          "id": "https://www.grid.ac/institutes/grid.464312.6", 
          "name": [
            "Guangzhou Research Institute of Non-ferrous Metals, 510650, Guangzhou, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Haiyan", 
        "givenName": "Wang", 
        "id": "sg:person.07775552353.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07775552353.00"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Guangzhou Research Institute of Non-ferrous Metals", 
          "id": "https://www.grid.ac/institutes/grid.464312.6", 
          "name": [
            "Guangzhou Research Institute of Non-ferrous Metals, 510650, Guangzhou, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wenjun", 
        "givenName": "Qi", 
        "id": "sg:person.013626554406.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013626554406.11"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Guangzhou Research Institute of Non-ferrous Metals", 
          "id": "https://www.grid.ac/institutes/grid.464312.6", 
          "name": [
            "Guangzhou Research Institute of Non-ferrous Metals, 510650, Guangzhou, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nan", 
        "givenName": "Zhou", 
        "id": "sg:person.07467754355.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07467754355.16"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.msea.2014.03.025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001790197"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0921-5093(00)01008-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004671391"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.matlet.2004.06.058", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004720714"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.msea.2011.09.029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007445639"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.matdes.2013.04.046", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007506216"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.powtec.2010.09.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015412632"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.msea.2010.08.090", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018456824"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0921-5093(94)09665-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019731692"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf03222246", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020742161", 
          "https://doi.org/10.1007/bf03222246"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.matdes.2014.01.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024661588"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.asej.2012.05.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027083347"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.msea.2011.04.090", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031055327"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.msea.2012.02.035", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032558481"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.msea.2010.01.052", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037977662"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.3103/s1067821210060088", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040612658", 
          "https://doi.org/10.3103/s1067821210060088"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.msea.2013.01.059", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043085056"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.msea.2013.07.083", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049110773"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0921-5093(02)00467-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052551836"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1707363", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057776265"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014-12", 
    "datePublishedReg": "2014-12-01", 
    "description": "Hot compression tests were carried out to study the deformation behaviors of a lead-free machinable brass using Gleeble-1500 thermal simulator in the temperature range of 823\u2013973K and the strain rate range of 0.01\u201310 s\u22121. The results show that the flow behavior of the lead-free machinable brass is strongly influenced by strain rate and temperature, and the flow stress increases with increasing strain rate and decreasing temperature. The constitutive equations incorporating the effects of strain rate and temperature have been established to model the hot deformation behavior of this alloy. The reliability of the developed constitutive model was demonstrated by the mean percentage error of 10.82 % and the correlation coefficient of 0.98. Moreover, the flow stability/instability of the lead-free machinable brass was carefully investigated on the basis of dynamic material modeling approach. It was found that plastic deformation was stable for processing conditions in which the strain rate range was 1\u201310 s\u22121 within the temperature range of 823\u2013923 K.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s13369-014-1456-1", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136851", 
        "issn": [
          "2193-567X", 
          "2191-4281"
        ], 
        "name": "Arabian Journal for Science and Engineering", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "12", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "39"
      }
    ], 
    "name": "Flow Behavior of Lead-Free Machinable Brass During Hot Compression Deformation", 
    "pagination": "9093-9100", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "e680e3b62ee4c11cefb95b9db951cd21e2211c2ace6f446bb4fb7081c5f6e1f0"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s13369-014-1456-1"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1048386137"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s13369-014-1456-1", 
      "https://app.dimensions.ai/details/publication/pub.1048386137"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T01:10", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8697_00000524.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs13369-014-1456-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s13369-014-1456-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s13369-014-1456-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s13369-014-1456-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s13369-014-1456-1'


 

This table displays all metadata directly associated to this object as RDF triples.

148 TRIPLES      21 PREDICATES      46 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s13369-014-1456-1 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author Nfed27eaf0ce547bc9e41ccf380852195
4 schema:citation sg:pub.10.1007/bf03222246
5 sg:pub.10.3103/s1067821210060088
6 https://doi.org/10.1016/0921-5093(94)09665-1
7 https://doi.org/10.1016/j.asej.2012.05.004
8 https://doi.org/10.1016/j.matdes.2013.04.046
9 https://doi.org/10.1016/j.matdes.2014.01.014
10 https://doi.org/10.1016/j.matlet.2004.06.058
11 https://doi.org/10.1016/j.msea.2010.01.052
12 https://doi.org/10.1016/j.msea.2010.08.090
13 https://doi.org/10.1016/j.msea.2011.04.090
14 https://doi.org/10.1016/j.msea.2011.09.029
15 https://doi.org/10.1016/j.msea.2012.02.035
16 https://doi.org/10.1016/j.msea.2013.01.059
17 https://doi.org/10.1016/j.msea.2013.07.083
18 https://doi.org/10.1016/j.msea.2014.03.025
19 https://doi.org/10.1016/j.powtec.2010.09.020
20 https://doi.org/10.1016/s0921-5093(00)01008-x
21 https://doi.org/10.1016/s0921-5093(02)00467-7
22 https://doi.org/10.1063/1.1707363
23 schema:datePublished 2014-12
24 schema:datePublishedReg 2014-12-01
25 schema:description Hot compression tests were carried out to study the deformation behaviors of a lead-free machinable brass using Gleeble-1500 thermal simulator in the temperature range of 823–973K and the strain rate range of 0.01–10 s−1. The results show that the flow behavior of the lead-free machinable brass is strongly influenced by strain rate and temperature, and the flow stress increases with increasing strain rate and decreasing temperature. The constitutive equations incorporating the effects of strain rate and temperature have been established to model the hot deformation behavior of this alloy. The reliability of the developed constitutive model was demonstrated by the mean percentage error of 10.82 % and the correlation coefficient of 0.98. Moreover, the flow stability/instability of the lead-free machinable brass was carefully investigated on the basis of dynamic material modeling approach. It was found that plastic deformation was stable for processing conditions in which the strain rate range was 1–10 s−1 within the temperature range of 823–923 K.
26 schema:genre research_article
27 schema:inLanguage en
28 schema:isAccessibleForFree false
29 schema:isPartOf N97bcdeb1ec3d437794eca7ecc8332174
30 Nc08239ba38c7419280f36e9234d37ce3
31 sg:journal.1136851
32 schema:name Flow Behavior of Lead-Free Machinable Brass During Hot Compression Deformation
33 schema:pagination 9093-9100
34 schema:productId N1330091e44d54d22a5a1c8d2ecfc2668
35 N9854a390a87249c780b2ec5138e26b72
36 Nf2e53eedfa1a4e4b9ae307e784bfa1f5
37 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048386137
38 https://doi.org/10.1007/s13369-014-1456-1
39 schema:sdDatePublished 2019-04-11T01:10
40 schema:sdLicense https://scigraph.springernature.com/explorer/license/
41 schema:sdPublisher N6fa0d67b21f04b42942a87156a8d7b2f
42 schema:url http://link.springer.com/10.1007%2Fs13369-014-1456-1
43 sgo:license sg:explorer/license/
44 sgo:sdDataset articles
45 rdf:type schema:ScholarlyArticle
46 N1330091e44d54d22a5a1c8d2ecfc2668 schema:name readcube_id
47 schema:value e680e3b62ee4c11cefb95b9db951cd21e2211c2ace6f446bb4fb7081c5f6e1f0
48 rdf:type schema:PropertyValue
49 N178ff4b050594753a497db09795d2885 rdf:first sg:person.07467754355.16
50 rdf:rest rdf:nil
51 N538bcbc69f1244f69e439b116a7689f0 rdf:first sg:person.07775552353.00
52 rdf:rest N8ecea6c4a7bf427583654628ef47c3c7
53 N6fa0d67b21f04b42942a87156a8d7b2f schema:name Springer Nature - SN SciGraph project
54 rdf:type schema:Organization
55 N8ecea6c4a7bf427583654628ef47c3c7 rdf:first sg:person.013626554406.11
56 rdf:rest N178ff4b050594753a497db09795d2885
57 N97bcdeb1ec3d437794eca7ecc8332174 schema:volumeNumber 39
58 rdf:type schema:PublicationVolume
59 N9854a390a87249c780b2ec5138e26b72 schema:name dimensions_id
60 schema:value pub.1048386137
61 rdf:type schema:PropertyValue
62 Na358e0d17d9a48369e4c2ec88e06d7f7 rdf:first sg:person.015700035331.02
63 rdf:rest N538bcbc69f1244f69e439b116a7689f0
64 Nc08239ba38c7419280f36e9234d37ce3 schema:issueNumber 12
65 rdf:type schema:PublicationIssue
66 Nf2e53eedfa1a4e4b9ae307e784bfa1f5 schema:name doi
67 schema:value 10.1007/s13369-014-1456-1
68 rdf:type schema:PropertyValue
69 Nfed27eaf0ce547bc9e41ccf380852195 rdf:first sg:person.012353200140.78
70 rdf:rest Na358e0d17d9a48369e4c2ec88e06d7f7
71 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
72 schema:name Engineering
73 rdf:type schema:DefinedTerm
74 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
75 schema:name Materials Engineering
76 rdf:type schema:DefinedTerm
77 sg:journal.1136851 schema:issn 2191-4281
78 2193-567X
79 schema:name Arabian Journal for Science and Engineering
80 rdf:type schema:Periodical
81 sg:person.012353200140.78 schema:affiliation https://www.grid.ac/institutes/grid.464312.6
82 schema:familyName Chunlei
83 schema:givenName Gan
84 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012353200140.78
85 rdf:type schema:Person
86 sg:person.013626554406.11 schema:affiliation https://www.grid.ac/institutes/grid.464312.6
87 schema:familyName Wenjun
88 schema:givenName Qi
89 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013626554406.11
90 rdf:type schema:Person
91 sg:person.015700035331.02 schema:affiliation https://www.grid.ac/institutes/grid.464312.6
92 schema:familyName Kaihong
93 schema:givenName Zheng
94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015700035331.02
95 rdf:type schema:Person
96 sg:person.07467754355.16 schema:affiliation https://www.grid.ac/institutes/grid.464312.6
97 schema:familyName Nan
98 schema:givenName Zhou
99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07467754355.16
100 rdf:type schema:Person
101 sg:person.07775552353.00 schema:affiliation https://www.grid.ac/institutes/grid.464312.6
102 schema:familyName Haiyan
103 schema:givenName Wang
104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07775552353.00
105 rdf:type schema:Person
106 sg:pub.10.1007/bf03222246 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020742161
107 https://doi.org/10.1007/bf03222246
108 rdf:type schema:CreativeWork
109 sg:pub.10.3103/s1067821210060088 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040612658
110 https://doi.org/10.3103/s1067821210060088
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1016/0921-5093(94)09665-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019731692
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1016/j.asej.2012.05.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027083347
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1016/j.matdes.2013.04.046 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007506216
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1016/j.matdes.2014.01.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024661588
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1016/j.matlet.2004.06.058 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004720714
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1016/j.msea.2010.01.052 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037977662
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1016/j.msea.2010.08.090 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018456824
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1016/j.msea.2011.04.090 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031055327
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1016/j.msea.2011.09.029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007445639
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1016/j.msea.2012.02.035 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032558481
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1016/j.msea.2013.01.059 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043085056
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1016/j.msea.2013.07.083 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049110773
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1016/j.msea.2014.03.025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001790197
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1016/j.powtec.2010.09.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015412632
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1016/s0921-5093(00)01008-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1004671391
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1016/s0921-5093(02)00467-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052551836
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1063/1.1707363 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057776265
145 rdf:type schema:CreativeWork
146 https://www.grid.ac/institutes/grid.464312.6 schema:alternateName Guangzhou Research Institute of Non-ferrous Metals
147 schema:name Guangzhou Research Institute of Non-ferrous Metals, 510650, Guangzhou, China
148 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...