Comparison of rheological behaviors with fumed silica-based shear thickening fluids View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2016-08-21

AUTHORS

Alain D. Moriana, Tongfei Tian, Vitor Sencadas, Weihua Li

ABSTRACT

Shear thickening fluids (STFs) of differing compositions were fabricated and characterised in order to observe the effect of varying chemical and material properties on the resultant rheological behavior. Steady shear tests showed that for a given carrier fluid and particle size exists an optimum weight fraction which exhibits optimal shear thickening performance. Testing also showed that increasing particle size resulted in increased shear thickening performance and its onset whilst altering the carrier fluid chemistry has a significant effect on the thickening performance. An explanation is provided connecting the effect of varying particle size, carrier fluid chemistry and weight fraction to the resultant rheological behavior of the STFs. Two STFs were chosen for further testing due to their improved but contrasting rheological behaviors. Both STFs displayed a relationship between steady and dynamic shear conditions via the Modified Cox-Merz rule at high strain amplitudes (γ≥500%). Understanding the effects of particle and liquid polymer chemistry on the shear thickening effect will assist in ‘tailoring’ STFs for certain potential or existing applications. More... »

PAGES

197-205

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s13367-016-0020-9

DOI

http://dx.doi.org/10.1007/s13367-016-0020-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1039266941


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0904", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0913", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mechanical Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "School of Mechanical, Materials and Mechatronics Engineering, University of Wollongong, 2522, Wollongong, NSW, Australia", 
          "id": "http://www.grid.ac/institutes/grid.1007.6", 
          "name": [
            "School of Mechanical, Materials and Mechatronics Engineering, University of Wollongong, 2522, Wollongong, NSW, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Moriana", 
        "givenName": "Alain D.", 
        "id": "sg:person.010041022117.90", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010041022117.90"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Intelligent Fluid Control Systems Laboratory, Institute of Fluid Science, Tohoku University, 2-1-1 Katahira, Aoba-ku, 980-8577, Sendai, Japan", 
          "id": "http://www.grid.ac/institutes/grid.69566.3a", 
          "name": [
            "Intelligent Fluid Control Systems Laboratory, Institute of Fluid Science, Tohoku University, 2-1-1 Katahira, Aoba-ku, 980-8577, Sendai, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tian", 
        "givenName": "Tongfei", 
        "id": "sg:person.014455121345.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014455121345.83"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Mechanical, Materials and Mechatronics Engineering, University of Wollongong, 2522, Wollongong, NSW, Australia", 
          "id": "http://www.grid.ac/institutes/grid.1007.6", 
          "name": [
            "School of Mechanical, Materials and Mechatronics Engineering, University of Wollongong, 2522, Wollongong, NSW, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sencadas", 
        "givenName": "Vitor", 
        "id": "sg:person.0643036322.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0643036322.02"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Mechanical, Materials and Mechatronics Engineering, University of Wollongong, 2522, Wollongong, NSW, Australia", 
          "id": "http://www.grid.ac/institutes/grid.1007.6", 
          "name": [
            "School of Mechanical, Materials and Mechatronics Engineering, University of Wollongong, 2522, Wollongong, NSW, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Weihua", 
        "id": "sg:person.0631410503.90", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0631410503.90"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00397-007-0202-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013447014", 
          "https://doi.org/10.1007/s00397-007-0202-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1024424200221", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045809540", 
          "https://doi.org/10.1023/a:1024424200221"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00397-009-0367-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020331443", 
          "https://doi.org/10.1007/s00397-009-0367-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10853-015-9151-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033392375", 
          "https://doi.org/10.1007/s10853-015-9151-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s13367-014-0015-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028446003", 
          "https://doi.org/10.1007/s13367-014-0015-3"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-08-21", 
    "datePublishedReg": "2016-08-21", 
    "description": "Shear thickening fluids (STFs) of differing compositions were fabricated and characterised in order to observe the effect of varying chemical and material properties on the resultant rheological behavior. Steady shear tests showed that for a given carrier fluid and particle size exists an optimum weight fraction which exhibits optimal shear thickening performance. Testing also showed that increasing particle size resulted in increased shear thickening performance and its onset whilst altering the carrier fluid chemistry has a significant effect on the thickening performance. An explanation is provided connecting the effect of varying particle size, carrier fluid chemistry and weight fraction to the resultant rheological behavior of the STFs. Two STFs were chosen for further testing due to their improved but contrasting rheological behaviors. Both STFs displayed a relationship between steady and dynamic shear conditions via the Modified Cox-Merz rule at high strain amplitudes (\u03b3\u2265500%). Understanding the effects of particle and liquid polymer chemistry on the shear thickening effect will assist in \u2018tailoring\u2019 STFs for certain potential or existing applications.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s13367-016-0020-9", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1136661", 
        "issn": [
          "1226-119X", 
          "2093-7660"
        ], 
        "name": "Korea-Australia Rheology Journal", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "28"
      }
    ], 
    "keywords": [
      "resultant rheological behavior", 
      "rheological behavior", 
      "particle size", 
      "Modified Cox-Merz rule", 
      "polymer chemistry", 
      "shear thickening fluid", 
      "weight fraction", 
      "fluid chemistry", 
      "Cox-Merz rule", 
      "steady shear tests", 
      "chemistry", 
      "thickening effect", 
      "shear thickening effect", 
      "dynamic shear conditions", 
      "thickening fluids", 
      "optimum weight fraction", 
      "high strain amplitudes", 
      "effect of particles", 
      "carrier fluid", 
      "shear tests", 
      "strain amplitude", 
      "material properties", 
      "silica", 
      "shear conditions", 
      "chemicals", 
      "properties", 
      "particles", 
      "size", 
      "behavior", 
      "fraction", 
      "composition", 
      "performance", 
      "fluid", 
      "applications", 
      "effect", 
      "existing applications", 
      "conditions", 
      "testing", 
      "amplitude", 
      "significant effect", 
      "order", 
      "test", 
      "comparison", 
      "further testing", 
      "explanation", 
      "rules", 
      "relationship", 
      "onset"
    ], 
    "name": "Comparison of rheological behaviors with fumed silica-based shear thickening fluids", 
    "pagination": "197-205", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1039266941"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s13367-016-0020-9"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s13367-016-0020-9", 
      "https://app.dimensions.ai/details/publication/pub.1039266941"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-08-04T17:04", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_687.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s13367-016-0020-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s13367-016-0020-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s13367-016-0020-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s13367-016-0020-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s13367-016-0020-9'


 

This table displays all metadata directly associated to this object as RDF triples.

157 TRIPLES      21 PREDICATES      79 URIs      64 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s13367-016-0020-9 schema:about anzsrc-for:09
2 anzsrc-for:0904
3 anzsrc-for:0912
4 anzsrc-for:0913
5 schema:author N0773e93120184a4093c31f9e918b2067
6 schema:citation sg:pub.10.1007/s00397-007-0202-y
7 sg:pub.10.1007/s00397-009-0367-7
8 sg:pub.10.1007/s10853-015-9151-5
9 sg:pub.10.1007/s13367-014-0015-3
10 sg:pub.10.1023/a:1024424200221
11 schema:datePublished 2016-08-21
12 schema:datePublishedReg 2016-08-21
13 schema:description Shear thickening fluids (STFs) of differing compositions were fabricated and characterised in order to observe the effect of varying chemical and material properties on the resultant rheological behavior. Steady shear tests showed that for a given carrier fluid and particle size exists an optimum weight fraction which exhibits optimal shear thickening performance. Testing also showed that increasing particle size resulted in increased shear thickening performance and its onset whilst altering the carrier fluid chemistry has a significant effect on the thickening performance. An explanation is provided connecting the effect of varying particle size, carrier fluid chemistry and weight fraction to the resultant rheological behavior of the STFs. Two STFs were chosen for further testing due to their improved but contrasting rheological behaviors. Both STFs displayed a relationship between steady and dynamic shear conditions via the Modified Cox-Merz rule at high strain amplitudes (γ≥500%). Understanding the effects of particle and liquid polymer chemistry on the shear thickening effect will assist in ‘tailoring’ STFs for certain potential or existing applications.
14 schema:genre article
15 schema:isAccessibleForFree true
16 schema:isPartOf N2de6ac8573c94e22bdde8a828e5d22a4
17 Na5e0bbe0a4fe410cb75a0e31c8e7ccdd
18 sg:journal.1136661
19 schema:keywords Cox-Merz rule
20 Modified Cox-Merz rule
21 amplitude
22 applications
23 behavior
24 carrier fluid
25 chemicals
26 chemistry
27 comparison
28 composition
29 conditions
30 dynamic shear conditions
31 effect
32 effect of particles
33 existing applications
34 explanation
35 fluid
36 fluid chemistry
37 fraction
38 further testing
39 high strain amplitudes
40 material properties
41 onset
42 optimum weight fraction
43 order
44 particle size
45 particles
46 performance
47 polymer chemistry
48 properties
49 relationship
50 resultant rheological behavior
51 rheological behavior
52 rules
53 shear conditions
54 shear tests
55 shear thickening effect
56 shear thickening fluid
57 significant effect
58 silica
59 size
60 steady shear tests
61 strain amplitude
62 test
63 testing
64 thickening effect
65 thickening fluids
66 weight fraction
67 schema:name Comparison of rheological behaviors with fumed silica-based shear thickening fluids
68 schema:pagination 197-205
69 schema:productId N2189d0f6732d4636921bd403bb68e67c
70 Nb157ec08f94a40c0be0d787919bd55b6
71 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039266941
72 https://doi.org/10.1007/s13367-016-0020-9
73 schema:sdDatePublished 2022-08-04T17:04
74 schema:sdLicense https://scigraph.springernature.com/explorer/license/
75 schema:sdPublisher Nf2bf7e2f80064c399b9fa3ccdd929ae5
76 schema:url https://doi.org/10.1007/s13367-016-0020-9
77 sgo:license sg:explorer/license/
78 sgo:sdDataset articles
79 rdf:type schema:ScholarlyArticle
80 N0773e93120184a4093c31f9e918b2067 rdf:first sg:person.010041022117.90
81 rdf:rest N5953624f3cd34e12802a789fe95c87e6
82 N2189d0f6732d4636921bd403bb68e67c schema:name doi
83 schema:value 10.1007/s13367-016-0020-9
84 rdf:type schema:PropertyValue
85 N2de6ac8573c94e22bdde8a828e5d22a4 schema:issueNumber 3
86 rdf:type schema:PublicationIssue
87 N5953624f3cd34e12802a789fe95c87e6 rdf:first sg:person.014455121345.83
88 rdf:rest Nf99b532dc3a14438b6bf1526f60086ba
89 N9a533331ce8d409e923b0824814dacd4 rdf:first sg:person.0631410503.90
90 rdf:rest rdf:nil
91 Na5e0bbe0a4fe410cb75a0e31c8e7ccdd schema:volumeNumber 28
92 rdf:type schema:PublicationVolume
93 Nb157ec08f94a40c0be0d787919bd55b6 schema:name dimensions_id
94 schema:value pub.1039266941
95 rdf:type schema:PropertyValue
96 Nf2bf7e2f80064c399b9fa3ccdd929ae5 schema:name Springer Nature - SN SciGraph project
97 rdf:type schema:Organization
98 Nf99b532dc3a14438b6bf1526f60086ba rdf:first sg:person.0643036322.02
99 rdf:rest N9a533331ce8d409e923b0824814dacd4
100 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
101 schema:name Engineering
102 rdf:type schema:DefinedTerm
103 anzsrc-for:0904 schema:inDefinedTermSet anzsrc-for:
104 schema:name Chemical Engineering
105 rdf:type schema:DefinedTerm
106 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
107 schema:name Materials Engineering
108 rdf:type schema:DefinedTerm
109 anzsrc-for:0913 schema:inDefinedTermSet anzsrc-for:
110 schema:name Mechanical Engineering
111 rdf:type schema:DefinedTerm
112 sg:journal.1136661 schema:issn 1226-119X
113 2093-7660
114 schema:name Korea-Australia Rheology Journal
115 schema:publisher Springer Nature
116 rdf:type schema:Periodical
117 sg:person.010041022117.90 schema:affiliation grid-institutes:grid.1007.6
118 schema:familyName Moriana
119 schema:givenName Alain D.
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010041022117.90
121 rdf:type schema:Person
122 sg:person.014455121345.83 schema:affiliation grid-institutes:grid.69566.3a
123 schema:familyName Tian
124 schema:givenName Tongfei
125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014455121345.83
126 rdf:type schema:Person
127 sg:person.0631410503.90 schema:affiliation grid-institutes:grid.1007.6
128 schema:familyName Li
129 schema:givenName Weihua
130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0631410503.90
131 rdf:type schema:Person
132 sg:person.0643036322.02 schema:affiliation grid-institutes:grid.1007.6
133 schema:familyName Sencadas
134 schema:givenName Vitor
135 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0643036322.02
136 rdf:type schema:Person
137 sg:pub.10.1007/s00397-007-0202-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1013447014
138 https://doi.org/10.1007/s00397-007-0202-y
139 rdf:type schema:CreativeWork
140 sg:pub.10.1007/s00397-009-0367-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020331443
141 https://doi.org/10.1007/s00397-009-0367-7
142 rdf:type schema:CreativeWork
143 sg:pub.10.1007/s10853-015-9151-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033392375
144 https://doi.org/10.1007/s10853-015-9151-5
145 rdf:type schema:CreativeWork
146 sg:pub.10.1007/s13367-014-0015-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028446003
147 https://doi.org/10.1007/s13367-014-0015-3
148 rdf:type schema:CreativeWork
149 sg:pub.10.1023/a:1024424200221 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045809540
150 https://doi.org/10.1023/a:1024424200221
151 rdf:type schema:CreativeWork
152 grid-institutes:grid.1007.6 schema:alternateName School of Mechanical, Materials and Mechatronics Engineering, University of Wollongong, 2522, Wollongong, NSW, Australia
153 schema:name School of Mechanical, Materials and Mechatronics Engineering, University of Wollongong, 2522, Wollongong, NSW, Australia
154 rdf:type schema:Organization
155 grid-institutes:grid.69566.3a schema:alternateName Intelligent Fluid Control Systems Laboratory, Institute of Fluid Science, Tohoku University, 2-1-1 Katahira, Aoba-ku, 980-8577, Sendai, Japan
156 schema:name Intelligent Fluid Control Systems Laboratory, Institute of Fluid Science, Tohoku University, 2-1-1 Katahira, Aoba-ku, 980-8577, Sendai, Japan
157 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...