On a problem of A. Weil View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-11

AUTHORS

Igor V. Nikolaev

ABSTRACT

A topological invariant of the geodesic laminations on a modular surface is constructed. The invariant has a continuous part (the tail of a continued fraction) and a combinatorial part (the singularity data). It is shown, that the invariant is complete, i.e. the geodesic lamination can be recovered from the invariant. The continuous part of the invariant has geometric meaning of a slope of lamination on the surface. More... »

PAGES

689-696

References to SciGraph publications

  • 1979-07. Quadratic differentials and foliations in ACTA MATHEMATICA
  • 1995-01. Flows on closed surfaces and behavior of trajectories lifted to the universal covering plane in JOURNAL OF DYNAMICAL AND CONTROL SYSTEMS
  • 1924-12. Ein mechanisches system mit quasiergodischen bahnen in ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITÄT HAMBURG
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s13366-018-0383-9

    DOI

    http://dx.doi.org/10.1007/s13366-018-0383-9

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1100920913


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "St. John's University", 
              "id": "https://www.grid.ac/institutes/grid.264091.8", 
              "name": [
                "Department of Mathematics and Computer Science, St. John\u2019s University, 8000 Utopia Parkway, 11439, New York, NY, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Nikolaev", 
            "givenName": "Igor V.", 
            "id": "sg:person.012272616361.05", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012272616361.05"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1112/jlms/s2-31.1.69", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019638223"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1112/jlms/s2-29.2.331", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021107778"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02395062", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024276244", 
              "https://doi.org/10.1007/bf02395062"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02954622", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035407133", 
              "https://doi.org/10.1007/bf02954622"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02254658", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039773047", 
              "https://doi.org/10.1007/bf02254658"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02254658", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039773047", 
              "https://doi.org/10.1007/bf02254658"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02254658", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039773047", 
              "https://doi.org/10.1007/bf02254658"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/s0143385700009585", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053888151"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/s0143385700009585", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053888151"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2307/1969999", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069675347"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/cbo9780511623912", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1098664015"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018-11", 
        "datePublishedReg": "2018-11-01", 
        "description": "A topological invariant of the geodesic laminations on a modular surface is constructed. The invariant has a continuous part (the tail of a continued fraction) and a combinatorial part (the singularity data). It is shown, that the invariant is complete, i.e. the geodesic lamination can be recovered from the invariant. The continuous part of the invariant has geometric meaning of a slope of lamination on the surface.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s13366-018-0383-9", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1051077", 
            "issn": [
              "0138-4821", 
              "2191-0383"
            ], 
            "name": "Beitr\u00e4ge zur Algebra und Geometrie / Contributions to Algebra and Geometry", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "4", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "59"
          }
        ], 
        "name": "On a problem of A. Weil", 
        "pagination": "689-696", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "bb064a5e1447d39834a52a6c34d47a82af4d4ea021fe36e78e6eed7a596638c5"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s13366-018-0383-9"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1100920913"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s13366-018-0383-9", 
          "https://app.dimensions.ai/details/publication/pub.1100920913"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T22:43", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8690_00000575.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs13366-018-0383-9"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s13366-018-0383-9'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s13366-018-0383-9'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s13366-018-0383-9'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s13366-018-0383-9'


     

    This table displays all metadata directly associated to this object as RDF triples.

    88 TRIPLES      21 PREDICATES      35 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s13366-018-0383-9 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author N56b0d80bc9314354969d8a5869581f26
    4 schema:citation sg:pub.10.1007/bf02254658
    5 sg:pub.10.1007/bf02395062
    6 sg:pub.10.1007/bf02954622
    7 https://doi.org/10.1017/cbo9780511623912
    8 https://doi.org/10.1017/s0143385700009585
    9 https://doi.org/10.1112/jlms/s2-29.2.331
    10 https://doi.org/10.1112/jlms/s2-31.1.69
    11 https://doi.org/10.2307/1969999
    12 schema:datePublished 2018-11
    13 schema:datePublishedReg 2018-11-01
    14 schema:description A topological invariant of the geodesic laminations on a modular surface is constructed. The invariant has a continuous part (the tail of a continued fraction) and a combinatorial part (the singularity data). It is shown, that the invariant is complete, i.e. the geodesic lamination can be recovered from the invariant. The continuous part of the invariant has geometric meaning of a slope of lamination on the surface.
    15 schema:genre research_article
    16 schema:inLanguage en
    17 schema:isAccessibleForFree true
    18 schema:isPartOf N599d8238d0a146b5af3a8ad7d2ab78f7
    19 N902c184d298245bd845be345e1a7e0e1
    20 sg:journal.1051077
    21 schema:name On a problem of A. Weil
    22 schema:pagination 689-696
    23 schema:productId N556efdb5391f40c59389e3efc895117b
    24 N714faf4449984dd2922b7f3c0df0c596
    25 N7ee5d8e6f3534d0f9b9e6a6b95ea3411
    26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100920913
    27 https://doi.org/10.1007/s13366-018-0383-9
    28 schema:sdDatePublished 2019-04-10T22:43
    29 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    30 schema:sdPublisher N3ef1559bedeb48368ac744a182f664ce
    31 schema:url https://link.springer.com/10.1007%2Fs13366-018-0383-9
    32 sgo:license sg:explorer/license/
    33 sgo:sdDataset articles
    34 rdf:type schema:ScholarlyArticle
    35 N3ef1559bedeb48368ac744a182f664ce schema:name Springer Nature - SN SciGraph project
    36 rdf:type schema:Organization
    37 N556efdb5391f40c59389e3efc895117b schema:name doi
    38 schema:value 10.1007/s13366-018-0383-9
    39 rdf:type schema:PropertyValue
    40 N56b0d80bc9314354969d8a5869581f26 rdf:first sg:person.012272616361.05
    41 rdf:rest rdf:nil
    42 N599d8238d0a146b5af3a8ad7d2ab78f7 schema:volumeNumber 59
    43 rdf:type schema:PublicationVolume
    44 N714faf4449984dd2922b7f3c0df0c596 schema:name dimensions_id
    45 schema:value pub.1100920913
    46 rdf:type schema:PropertyValue
    47 N7ee5d8e6f3534d0f9b9e6a6b95ea3411 schema:name readcube_id
    48 schema:value bb064a5e1447d39834a52a6c34d47a82af4d4ea021fe36e78e6eed7a596638c5
    49 rdf:type schema:PropertyValue
    50 N902c184d298245bd845be345e1a7e0e1 schema:issueNumber 4
    51 rdf:type schema:PublicationIssue
    52 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    53 schema:name Mathematical Sciences
    54 rdf:type schema:DefinedTerm
    55 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    56 schema:name Pure Mathematics
    57 rdf:type schema:DefinedTerm
    58 sg:journal.1051077 schema:issn 0138-4821
    59 2191-0383
    60 schema:name Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry
    61 rdf:type schema:Periodical
    62 sg:person.012272616361.05 schema:affiliation https://www.grid.ac/institutes/grid.264091.8
    63 schema:familyName Nikolaev
    64 schema:givenName Igor V.
    65 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012272616361.05
    66 rdf:type schema:Person
    67 sg:pub.10.1007/bf02254658 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039773047
    68 https://doi.org/10.1007/bf02254658
    69 rdf:type schema:CreativeWork
    70 sg:pub.10.1007/bf02395062 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024276244
    71 https://doi.org/10.1007/bf02395062
    72 rdf:type schema:CreativeWork
    73 sg:pub.10.1007/bf02954622 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035407133
    74 https://doi.org/10.1007/bf02954622
    75 rdf:type schema:CreativeWork
    76 https://doi.org/10.1017/cbo9780511623912 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098664015
    77 rdf:type schema:CreativeWork
    78 https://doi.org/10.1017/s0143385700009585 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053888151
    79 rdf:type schema:CreativeWork
    80 https://doi.org/10.1112/jlms/s2-29.2.331 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021107778
    81 rdf:type schema:CreativeWork
    82 https://doi.org/10.1112/jlms/s2-31.1.69 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019638223
    83 rdf:type schema:CreativeWork
    84 https://doi.org/10.2307/1969999 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069675347
    85 rdf:type schema:CreativeWork
    86 https://www.grid.ac/institutes/grid.264091.8 schema:alternateName St. John's University
    87 schema:name Department of Mathematics and Computer Science, St. John’s University, 8000 Utopia Parkway, 11439, New York, NY, USA
    88 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...