Moderate genetic variability and no genetic structure within the European golden jackal (Canis aureus) population in Hungary View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-01

AUTHORS

Szilvia Kusza, Krisztina Nagy, József Lanszki, Miklós Heltai, Csaba Szabó, Sylwia D. Czarnomska

ABSTRACT

Demography of the golden jackal (Canis aureus) was affected by various events in the past, but today jackal populations are increasing throughout Europe. Despite the fact that it is one of the most rapidly spreading mammals in Europe, previous genetic studies detected low genetic diversity among and within populations. The Hungarian landscape is not highly varied; however, it is in the middle of the country’s territory that the jackal’s number is significantly increasing. Therefore, the main goal of our research was to further investigate the genetic diversity and population structure of the Hungarian golden jackal population based on a larger sample size than in previous studies ever, expecting that individuals from genetically differentiated subpopulations might meet in the area studied. Seventy golden jackals from the most populated area, Western Hungary, were studied with regard to genetic variability, differentiation, and structure as revealed by 385-bp-long mitochondrial control region sequences and 10 nuclear canine microsatellite loci. There was no variation at all in the mtDNA CR sequences, and nuclear variability was low (average observed and expected heterozygosity of 0.348 and 0.447, respectively). Furthermore, no obvious genetic structuring was detected in the studied population using GENELAND and PCA analyses. The present regional genetic structure and diversity of the Hungarian golden jackal is consistent with the previous results; however, it is the first analysis based on a relatively large sample size. We concluded that further molecular genetic studies are needed with a more specific marker set to have more accurate knowledge on rate of hybridization and genetic structure in golden jackal populations across Hungary and Europe. More... »

PAGES

1-7

References to SciGraph publications

  • 2013-02. Genetic characterization of populations of the golden jackal and the red fox in Israel in CONSERVATION GENETICS
  • 2007-12. Molecular biogeography of Europe: Pleistocene cycles and postglacial trends in FRONTIERS IN ZOOLOGY
  • 2010-04. Genetic diversity and landscape genetic structure of otter (Lutra lutra) populations in Europe in CONSERVATION GENETICS
  • 2014-04. Population densities and habitat use of the golden jackal (Canis aureus) in farmlands across the Balkan Peninsula in EUROPEAN JOURNAL OF WILDLIFE RESEARCH
  • 1991. Molecular Systematics at the Species Boundary: Exploiting Conserved and Variable Regions of the Mitochondrial Genome of Animals via Direct Sequencing from Amplified DNA in MOLECULAR TECHNIQUES IN TAXONOMY
  • 1983-02. The ecology of carnivore social behaviour in NATURE
  • 2014-02. Genetic structure and expansion of golden jackals (Canis aureus) in the north-western distribution range (Croatia and eastern Italian Alps) in CONSERVATION GENETICS
  • 2019-01. Modeling the response of an endangered flagship predator to climate change in Iran in MAMMAL RESEARCH
  • 2012-02. Genetics of canine olfaction and receptor diversity in MAMMALIAN GENOME
  • 2015-09. Legal implications of range expansions in a terrestrial carnivore: the case of the golden jackal (Canis aureus) in Europe in BIODIVERSITY AND CONSERVATION
  • 2014-04. Unregulated hunting and genetic recovery from a severe population decline: the cautionary case of Bulgarian wolves in CONSERVATION GENETICS
  • 2015-10. Range expansion of the golden jackal (Canis aureus) into Poland: first records in MAMMAL RESEARCH
  • 2009-04. Genetic Variability, Differentiation, and Founder Effect in Golden Jackals (Canis aureus) from Serbia as Revealed by Mitochondrial DNA and Nuclear Microsatellite Loci in BIOCHEMICAL GENETICS
  • 2012-06. STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method in CONSERVATION GENETICS RESOURCES
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s13364-018-0390-0

    DOI

    http://dx.doi.org/10.1007/s13364-018-0390-0

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1105712401


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Debrecen", 
              "id": "https://www.grid.ac/institutes/grid.7122.6", 
              "name": [
                "Institute of Animal Science, Biotechnology and Nature Conservation, University of Debrecen, Debrecen, Hungary"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kusza", 
            "givenName": "Szilvia", 
            "id": "sg:person.01120313607.58", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01120313607.58"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Debrecen", 
              "id": "https://www.grid.ac/institutes/grid.7122.6", 
              "name": [
                "Institute of Animal Science, Biotechnology and Nature Conservation, University of Debrecen, Debrecen, Hungary"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Nagy", 
            "givenName": "Krisztina", 
            "id": "sg:person.0715250616.24", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0715250616.24"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Kapsovar", 
              "id": "https://www.grid.ac/institutes/grid.163004.0", 
              "name": [
                "Carnivore Ecology Research Group, Kaposv\u00e1r University, Kaposv\u00e1r, Hungary"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lanszki", 
            "givenName": "J\u00f3zsef", 
            "id": "sg:person.01035730505.55", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01035730505.55"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Szent Istv\u00e1n University", 
              "id": "https://www.grid.ac/institutes/grid.129553.9", 
              "name": [
                "Institute for Wildlife Conservation, Szent Istv\u00e1n University, G\u00f6d\u00f6ll\u0151, Hungary"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Heltai", 
            "givenName": "Mikl\u00f3s", 
            "id": "sg:person.01027452146.12", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01027452146.12"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Debrecen", 
              "id": "https://www.grid.ac/institutes/grid.7122.6", 
              "name": [
                "Institute of Animal Science, Biotechnology and Nature Conservation, University of Debrecen, Debrecen, Hungary"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Szab\u00f3", 
            "givenName": "Csaba", 
            "id": "sg:person.0774324527.91", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0774324527.91"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute of Biochemistry and Biophysics", 
              "id": "https://www.grid.ac/institutes/grid.418825.2", 
              "name": [
                "Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Czarnomska", 
            "givenName": "Sylwia D.", 
            "id": "sg:person.011510016144.14", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011510016144.14"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s13364-015-0238-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001567212", 
              "https://doi.org/10.1007/s13364-015-0238-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.0306582101", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002105229"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0138497", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007367466"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1742-9994-4-11", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008597571", 
              "https://doi.org/10.1186/1742-9994-4-11"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/1755-0998.12157", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009484232"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10531-015-0948-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009693399", 
              "https://doi.org/10.1007/s10531-015-0948-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10531-015-0948-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009693399", 
              "https://doi.org/10.1007/s10531-015-0948-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btn129", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011820832"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/301379a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012149756", 
              "https://doi.org/10.1038/301379a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0141236", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013832011"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12686-011-9548-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014160842", 
              "https://doi.org/10.1007/s12686-011-9548-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.mambio.2004.12.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014921381"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/1755-0998.12387", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019918862"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1471-8286.2004.00684.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021656571"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1095-8312.1999.tb01160.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022232501"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.mambio.2016.02.005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026941807"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cub.2015.06.060", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027673447"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1515/mamm.2009.048", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029013292"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10592-010-0054-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029259724", 
              "https://doi.org/10.1007/s10592-010-0054-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10592-010-0054-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029259724", 
              "https://doi.org/10.1007/s10592-010-0054-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1365-2907.1997.tb00375.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030578265"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1146/annurev.ecolsys.110308.120324", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034346104"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1098/rsos.150450", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034669442"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1365-294x.2010.04688.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040104942"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1365-294x.2010.04688.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040104942"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/jhered/89.3.238", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040645494"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00335-011-9371-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041549548", 
              "https://doi.org/10.1007/s00335-011-9371-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3897/zookeys.641.10946", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041604057"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10344-013-0765-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042467814", 
              "https://doi.org/10.1007/s10344-013-0765-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10528-009-9221-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042650049", 
              "https://doi.org/10.1007/s10528-009-9221-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10528-009-9221-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042650049", 
              "https://doi.org/10.1007/s10528-009-9221-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1365-294x.2005.02553.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045105386"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1365-294x.2005.02553.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045105386"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10592-013-0547-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046770793", 
              "https://doi.org/10.1007/s10592-013-0547-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10592-013-0547-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046770793", 
              "https://doi.org/10.1007/s10592-013-0547-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-83962-7_4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047608275", 
              "https://doi.org/10.1007/978-3-642-83962-7_4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10592-013-0530-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047652572", 
              "https://doi.org/10.1007/s10592-013-0530-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1365-2907.2011.00185.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050533885"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10592-012-0423-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050783222", 
              "https://doi.org/10.1007/s10592-012-0423-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1471-8286.2005.01031.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051723895"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btn419", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053304906"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1074647594", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1075335894", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1083023539", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/oxfordjournals.jhered.a111573", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1083620582"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/oxfordjournals.jhered.a111627", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1083620598"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.mambio.2017.11.011", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093063700"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s13364-018-0384-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1105010838", 
              "https://doi.org/10.1007/s13364-018-0384-y"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-01", 
        "datePublishedReg": "2019-01-01", 
        "description": "Demography of the golden jackal (Canis aureus) was affected by various events in the past, but today jackal populations are increasing throughout Europe. Despite the fact that it is one of the most rapidly spreading mammals in Europe, previous genetic studies detected low genetic diversity among and within populations. The Hungarian landscape is not highly varied; however, it is in the middle of the country\u2019s territory that the jackal\u2019s number is significantly increasing. Therefore, the main goal of our research was to further investigate the genetic diversity and population structure of the Hungarian golden jackal population based on a larger sample size than in previous studies ever, expecting that individuals from genetically differentiated subpopulations might meet in the area studied. Seventy golden jackals from the most populated area, Western Hungary, were studied with regard to genetic variability, differentiation, and structure as revealed by 385-bp-long mitochondrial control region sequences and 10 nuclear canine microsatellite loci. There was no variation at all in the mtDNA CR sequences, and nuclear variability was low (average observed and expected heterozygosity of 0.348 and 0.447, respectively). Furthermore, no obvious genetic structuring was detected in the studied population using GENELAND and PCA analyses. The present regional genetic structure and diversity of the Hungarian golden jackal is consistent with the previous results; however, it is the first analysis based on a relatively large sample size. We concluded that further molecular genetic studies are needed with a more specific marker set to have more accurate knowledge on rate of hybridization and genetic structure in golden jackal populations across Hungary and Europe.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s13364-018-0390-0", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1295411", 
            "issn": [
              "2199-2401", 
              "2199-241X"
            ], 
            "name": "Mammal Research", 
            "type": "Periodical"
          }
        ], 
        "name": "Moderate genetic variability and no genetic structure within the European golden jackal (Canis aureus) population in Hungary", 
        "pagination": "1-7", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "f1371977273857eede0a4e10c927420d4effa02f33da4caeb1a7ab79e5e53801"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s13364-018-0390-0"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1105712401"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s13364-018-0390-0", 
          "https://app.dimensions.ai/details/publication/pub.1105712401"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T23:40", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8693_00000604.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs13364-018-0390-0"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s13364-018-0390-0'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s13364-018-0390-0'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s13364-018-0390-0'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s13364-018-0390-0'


     

    This table displays all metadata directly associated to this object as RDF triples.

    236 TRIPLES      21 PREDICATES      67 URIs      17 LITERALS      5 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s13364-018-0390-0 schema:about anzsrc-for:06
    2 anzsrc-for:0604
    3 schema:author Nd942f722ca0e4e48987b0a62d7b5ad41
    4 schema:citation sg:pub.10.1007/978-3-642-83962-7_4
    5 sg:pub.10.1007/s00335-011-9371-1
    6 sg:pub.10.1007/s10344-013-0765-0
    7 sg:pub.10.1007/s10528-009-9221-y
    8 sg:pub.10.1007/s10531-015-0948-y
    9 sg:pub.10.1007/s10592-010-0054-3
    10 sg:pub.10.1007/s10592-012-0423-1
    11 sg:pub.10.1007/s10592-013-0530-7
    12 sg:pub.10.1007/s10592-013-0547-y
    13 sg:pub.10.1007/s12686-011-9548-7
    14 sg:pub.10.1007/s13364-015-0238-9
    15 sg:pub.10.1007/s13364-018-0384-y
    16 sg:pub.10.1038/301379a0
    17 sg:pub.10.1186/1742-9994-4-11
    18 https://app.dimensions.ai/details/publication/pub.1074647594
    19 https://app.dimensions.ai/details/publication/pub.1075335894
    20 https://app.dimensions.ai/details/publication/pub.1083023539
    21 https://doi.org/10.1016/j.cub.2015.06.060
    22 https://doi.org/10.1016/j.mambio.2004.12.001
    23 https://doi.org/10.1016/j.mambio.2016.02.005
    24 https://doi.org/10.1016/j.mambio.2017.11.011
    25 https://doi.org/10.1073/pnas.0306582101
    26 https://doi.org/10.1093/bioinformatics/btn129
    27 https://doi.org/10.1093/bioinformatics/btn419
    28 https://doi.org/10.1093/jhered/89.3.238
    29 https://doi.org/10.1093/oxfordjournals.jhered.a111573
    30 https://doi.org/10.1093/oxfordjournals.jhered.a111627
    31 https://doi.org/10.1098/rsos.150450
    32 https://doi.org/10.1111/1755-0998.12157
    33 https://doi.org/10.1111/1755-0998.12387
    34 https://doi.org/10.1111/j.1095-8312.1999.tb01160.x
    35 https://doi.org/10.1111/j.1365-2907.1997.tb00375.x
    36 https://doi.org/10.1111/j.1365-2907.2011.00185.x
    37 https://doi.org/10.1111/j.1365-294x.2005.02553.x
    38 https://doi.org/10.1111/j.1365-294x.2010.04688.x
    39 https://doi.org/10.1111/j.1471-8286.2004.00684.x
    40 https://doi.org/10.1111/j.1471-8286.2005.01031.x
    41 https://doi.org/10.1146/annurev.ecolsys.110308.120324
    42 https://doi.org/10.1371/journal.pone.0138497
    43 https://doi.org/10.1371/journal.pone.0141236
    44 https://doi.org/10.1515/mamm.2009.048
    45 https://doi.org/10.3897/zookeys.641.10946
    46 schema:datePublished 2019-01
    47 schema:datePublishedReg 2019-01-01
    48 schema:description Demography of the golden jackal (Canis aureus) was affected by various events in the past, but today jackal populations are increasing throughout Europe. Despite the fact that it is one of the most rapidly spreading mammals in Europe, previous genetic studies detected low genetic diversity among and within populations. The Hungarian landscape is not highly varied; however, it is in the middle of the country’s territory that the jackal’s number is significantly increasing. Therefore, the main goal of our research was to further investigate the genetic diversity and population structure of the Hungarian golden jackal population based on a larger sample size than in previous studies ever, expecting that individuals from genetically differentiated subpopulations might meet in the area studied. Seventy golden jackals from the most populated area, Western Hungary, were studied with regard to genetic variability, differentiation, and structure as revealed by 385-bp-long mitochondrial control region sequences and 10 nuclear canine microsatellite loci. There was no variation at all in the mtDNA CR sequences, and nuclear variability was low (average observed and expected heterozygosity of 0.348 and 0.447, respectively). Furthermore, no obvious genetic structuring was detected in the studied population using GENELAND and PCA analyses. The present regional genetic structure and diversity of the Hungarian golden jackal is consistent with the previous results; however, it is the first analysis based on a relatively large sample size. We concluded that further molecular genetic studies are needed with a more specific marker set to have more accurate knowledge on rate of hybridization and genetic structure in golden jackal populations across Hungary and Europe.
    49 schema:genre research_article
    50 schema:inLanguage en
    51 schema:isAccessibleForFree false
    52 schema:isPartOf sg:journal.1295411
    53 schema:name Moderate genetic variability and no genetic structure within the European golden jackal (Canis aureus) population in Hungary
    54 schema:pagination 1-7
    55 schema:productId N9b5d996c4fd845c6a8ea6e9c441b69de
    56 Nad7a67dec42b4cf184cf4eaafaa00a35
    57 Nec27f538f0d64821a005cc59156d98d1
    58 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105712401
    59 https://doi.org/10.1007/s13364-018-0390-0
    60 schema:sdDatePublished 2019-04-10T23:40
    61 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    62 schema:sdPublisher Nb0134d5c1c924db998c4ecbf4ccda99c
    63 schema:url https://link.springer.com/10.1007%2Fs13364-018-0390-0
    64 sgo:license sg:explorer/license/
    65 sgo:sdDataset articles
    66 rdf:type schema:ScholarlyArticle
    67 N3038460d616d401c92a7a25555222fbc rdf:first sg:person.0774324527.91
    68 rdf:rest Na0aba4e72a7e4be59d5cb583c6a766af
    69 N59a3e590fc1f4ccf91f2236335ef7c74 rdf:first sg:person.01035730505.55
    70 rdf:rest Nf4b5f908eb5447bc8acb6b219944df60
    71 N9b5d996c4fd845c6a8ea6e9c441b69de schema:name doi
    72 schema:value 10.1007/s13364-018-0390-0
    73 rdf:type schema:PropertyValue
    74 Na0aba4e72a7e4be59d5cb583c6a766af rdf:first sg:person.011510016144.14
    75 rdf:rest rdf:nil
    76 Nad7a67dec42b4cf184cf4eaafaa00a35 schema:name readcube_id
    77 schema:value f1371977273857eede0a4e10c927420d4effa02f33da4caeb1a7ab79e5e53801
    78 rdf:type schema:PropertyValue
    79 Nb0134d5c1c924db998c4ecbf4ccda99c schema:name Springer Nature - SN SciGraph project
    80 rdf:type schema:Organization
    81 Nd942f722ca0e4e48987b0a62d7b5ad41 rdf:first sg:person.01120313607.58
    82 rdf:rest Nea0846fae8eb4858afface5daca54a07
    83 Nea0846fae8eb4858afface5daca54a07 rdf:first sg:person.0715250616.24
    84 rdf:rest N59a3e590fc1f4ccf91f2236335ef7c74
    85 Nec27f538f0d64821a005cc59156d98d1 schema:name dimensions_id
    86 schema:value pub.1105712401
    87 rdf:type schema:PropertyValue
    88 Nf4b5f908eb5447bc8acb6b219944df60 rdf:first sg:person.01027452146.12
    89 rdf:rest N3038460d616d401c92a7a25555222fbc
    90 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    91 schema:name Biological Sciences
    92 rdf:type schema:DefinedTerm
    93 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    94 schema:name Genetics
    95 rdf:type schema:DefinedTerm
    96 sg:journal.1295411 schema:issn 2199-2401
    97 2199-241X
    98 schema:name Mammal Research
    99 rdf:type schema:Periodical
    100 sg:person.01027452146.12 schema:affiliation https://www.grid.ac/institutes/grid.129553.9
    101 schema:familyName Heltai
    102 schema:givenName Miklós
    103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01027452146.12
    104 rdf:type schema:Person
    105 sg:person.01035730505.55 schema:affiliation https://www.grid.ac/institutes/grid.163004.0
    106 schema:familyName Lanszki
    107 schema:givenName József
    108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01035730505.55
    109 rdf:type schema:Person
    110 sg:person.01120313607.58 schema:affiliation https://www.grid.ac/institutes/grid.7122.6
    111 schema:familyName Kusza
    112 schema:givenName Szilvia
    113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01120313607.58
    114 rdf:type schema:Person
    115 sg:person.011510016144.14 schema:affiliation https://www.grid.ac/institutes/grid.418825.2
    116 schema:familyName Czarnomska
    117 schema:givenName Sylwia D.
    118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011510016144.14
    119 rdf:type schema:Person
    120 sg:person.0715250616.24 schema:affiliation https://www.grid.ac/institutes/grid.7122.6
    121 schema:familyName Nagy
    122 schema:givenName Krisztina
    123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0715250616.24
    124 rdf:type schema:Person
    125 sg:person.0774324527.91 schema:affiliation https://www.grid.ac/institutes/grid.7122.6
    126 schema:familyName Szabó
    127 schema:givenName Csaba
    128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0774324527.91
    129 rdf:type schema:Person
    130 sg:pub.10.1007/978-3-642-83962-7_4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047608275
    131 https://doi.org/10.1007/978-3-642-83962-7_4
    132 rdf:type schema:CreativeWork
    133 sg:pub.10.1007/s00335-011-9371-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041549548
    134 https://doi.org/10.1007/s00335-011-9371-1
    135 rdf:type schema:CreativeWork
    136 sg:pub.10.1007/s10344-013-0765-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042467814
    137 https://doi.org/10.1007/s10344-013-0765-0
    138 rdf:type schema:CreativeWork
    139 sg:pub.10.1007/s10528-009-9221-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1042650049
    140 https://doi.org/10.1007/s10528-009-9221-y
    141 rdf:type schema:CreativeWork
    142 sg:pub.10.1007/s10531-015-0948-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1009693399
    143 https://doi.org/10.1007/s10531-015-0948-y
    144 rdf:type schema:CreativeWork
    145 sg:pub.10.1007/s10592-010-0054-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029259724
    146 https://doi.org/10.1007/s10592-010-0054-3
    147 rdf:type schema:CreativeWork
    148 sg:pub.10.1007/s10592-012-0423-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050783222
    149 https://doi.org/10.1007/s10592-012-0423-1
    150 rdf:type schema:CreativeWork
    151 sg:pub.10.1007/s10592-013-0530-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047652572
    152 https://doi.org/10.1007/s10592-013-0530-7
    153 rdf:type schema:CreativeWork
    154 sg:pub.10.1007/s10592-013-0547-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1046770793
    155 https://doi.org/10.1007/s10592-013-0547-y
    156 rdf:type schema:CreativeWork
    157 sg:pub.10.1007/s12686-011-9548-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014160842
    158 https://doi.org/10.1007/s12686-011-9548-7
    159 rdf:type schema:CreativeWork
    160 sg:pub.10.1007/s13364-015-0238-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001567212
    161 https://doi.org/10.1007/s13364-015-0238-9
    162 rdf:type schema:CreativeWork
    163 sg:pub.10.1007/s13364-018-0384-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1105010838
    164 https://doi.org/10.1007/s13364-018-0384-y
    165 rdf:type schema:CreativeWork
    166 sg:pub.10.1038/301379a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012149756
    167 https://doi.org/10.1038/301379a0
    168 rdf:type schema:CreativeWork
    169 sg:pub.10.1186/1742-9994-4-11 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008597571
    170 https://doi.org/10.1186/1742-9994-4-11
    171 rdf:type schema:CreativeWork
    172 https://app.dimensions.ai/details/publication/pub.1074647594 schema:CreativeWork
    173 https://app.dimensions.ai/details/publication/pub.1075335894 schema:CreativeWork
    174 https://app.dimensions.ai/details/publication/pub.1083023539 schema:CreativeWork
    175 https://doi.org/10.1016/j.cub.2015.06.060 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027673447
    176 rdf:type schema:CreativeWork
    177 https://doi.org/10.1016/j.mambio.2004.12.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014921381
    178 rdf:type schema:CreativeWork
    179 https://doi.org/10.1016/j.mambio.2016.02.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026941807
    180 rdf:type schema:CreativeWork
    181 https://doi.org/10.1016/j.mambio.2017.11.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093063700
    182 rdf:type schema:CreativeWork
    183 https://doi.org/10.1073/pnas.0306582101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002105229
    184 rdf:type schema:CreativeWork
    185 https://doi.org/10.1093/bioinformatics/btn129 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011820832
    186 rdf:type schema:CreativeWork
    187 https://doi.org/10.1093/bioinformatics/btn419 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053304906
    188 rdf:type schema:CreativeWork
    189 https://doi.org/10.1093/jhered/89.3.238 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040645494
    190 rdf:type schema:CreativeWork
    191 https://doi.org/10.1093/oxfordjournals.jhered.a111573 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083620582
    192 rdf:type schema:CreativeWork
    193 https://doi.org/10.1093/oxfordjournals.jhered.a111627 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083620598
    194 rdf:type schema:CreativeWork
    195 https://doi.org/10.1098/rsos.150450 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034669442
    196 rdf:type schema:CreativeWork
    197 https://doi.org/10.1111/1755-0998.12157 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009484232
    198 rdf:type schema:CreativeWork
    199 https://doi.org/10.1111/1755-0998.12387 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019918862
    200 rdf:type schema:CreativeWork
    201 https://doi.org/10.1111/j.1095-8312.1999.tb01160.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1022232501
    202 rdf:type schema:CreativeWork
    203 https://doi.org/10.1111/j.1365-2907.1997.tb00375.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1030578265
    204 rdf:type schema:CreativeWork
    205 https://doi.org/10.1111/j.1365-2907.2011.00185.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1050533885
    206 rdf:type schema:CreativeWork
    207 https://doi.org/10.1111/j.1365-294x.2005.02553.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1045105386
    208 rdf:type schema:CreativeWork
    209 https://doi.org/10.1111/j.1365-294x.2010.04688.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1040104942
    210 rdf:type schema:CreativeWork
    211 https://doi.org/10.1111/j.1471-8286.2004.00684.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1021656571
    212 rdf:type schema:CreativeWork
    213 https://doi.org/10.1111/j.1471-8286.2005.01031.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1051723895
    214 rdf:type schema:CreativeWork
    215 https://doi.org/10.1146/annurev.ecolsys.110308.120324 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034346104
    216 rdf:type schema:CreativeWork
    217 https://doi.org/10.1371/journal.pone.0138497 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007367466
    218 rdf:type schema:CreativeWork
    219 https://doi.org/10.1371/journal.pone.0141236 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013832011
    220 rdf:type schema:CreativeWork
    221 https://doi.org/10.1515/mamm.2009.048 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029013292
    222 rdf:type schema:CreativeWork
    223 https://doi.org/10.3897/zookeys.641.10946 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041604057
    224 rdf:type schema:CreativeWork
    225 https://www.grid.ac/institutes/grid.129553.9 schema:alternateName Szent István University
    226 schema:name Institute for Wildlife Conservation, Szent István University, Gödöllő, Hungary
    227 rdf:type schema:Organization
    228 https://www.grid.ac/institutes/grid.163004.0 schema:alternateName University of Kapsovar
    229 schema:name Carnivore Ecology Research Group, Kaposvár University, Kaposvár, Hungary
    230 rdf:type schema:Organization
    231 https://www.grid.ac/institutes/grid.418825.2 schema:alternateName Institute of Biochemistry and Biophysics
    232 schema:name Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
    233 rdf:type schema:Organization
    234 https://www.grid.ac/institutes/grid.7122.6 schema:alternateName University of Debrecen
    235 schema:name Institute of Animal Science, Biotechnology and Nature Conservation, University of Debrecen, Debrecen, Hungary
    236 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...