Beyond Naphthenic Acids: Environmental Screening of Water from Natural Sources and the Athabasca Oil Sands Industry Using Atmospheric Pressure Photoionization ... View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2015-06-27

AUTHORS

Mark P. Barrow, Kerry M. Peru, Brian Fahlman, L. Mark Hewitt, Richard A. Frank, John V. Headley

ABSTRACT

There is a growing need for environmental screening of natural waters in the Athabasca region of Alberta, Canada, particularly in the differentiation between anthropogenic and naturally-derived organic compounds associated with weathered bitumen deposits. Previous research has focused primarily upon characterization of naphthenic acids in water samples by negative-ion electrospray ionization methods. Atmospheric pressure photoionization is a much less widely used ionization method, but one that affords the possibility of observing low polarity compounds that cannot be readily observed by electrospray ionization. This study describes the first usage of atmospheric pressure photoionization Fourier transform ion cyclotron resonance mass spectrometry (in both positive-ion and negative-ion modes) to characterize and compare extracts of oil sands process water, river water, and groundwater samples from areas associated with oil sands mining activities. When comparing mass spectra previously obtained by electrospray ionization and data acquired by atmospheric pressure photoionization, there can be a doubling of the number of components detected. In addition to polar compounds that have previously been observed, low-polarity, sulfur-containing compounds and hydrocarbons that do not incorporate a heteroatom were detected. These latter components, which are not amenable to electrospray ionization, have potential for screening efforts within monitoring programs of the oil sands.Graphical Abstractᅟ More... »

PAGES

1508-1521

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s13361-015-1188-9

DOI

http://dx.doi.org/10.1007/s13361-015-1188-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1050580436

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/26115966


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0301", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Analytical Chemistry", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Chemistry, University of Warwick, CV4 7AL, Coventry, UK", 
          "id": "http://www.grid.ac/institutes/grid.7372.1", 
          "name": [
            "Department of Chemistry, University of Warwick, CV4 7AL, Coventry, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Barrow", 
        "givenName": "Mark P.", 
        "id": "sg:person.0715434276.73", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0715434276.73"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Water Science and Technology Division, Environment Canada, S7N3H5, Saskatoon, Saskatchewan, Canada", 
          "id": "http://www.grid.ac/institutes/grid.410334.1", 
          "name": [
            "Water Science and Technology Division, Environment Canada, S7N3H5, Saskatoon, Saskatchewan, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Peru", 
        "givenName": "Kerry M.", 
        "id": "sg:person.0743310216.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0743310216.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Environment and Carbon Management Division, Alberta Innovates-Technology Futures, T9C 1T4, Vegreville, Alberta, Canada", 
          "id": "http://www.grid.ac/institutes/grid.488584.d", 
          "name": [
            "Environment and Carbon Management Division, Alberta Innovates-Technology Futures, T9C 1T4, Vegreville, Alberta, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fahlman", 
        "givenName": "Brian", 
        "id": "sg:person.01160203235.73", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01160203235.73"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Water Science and Technology Division, Environment Canada, L7R 4A6, Burlington, Ontario, Canada", 
          "id": "http://www.grid.ac/institutes/grid.410334.1", 
          "name": [
            "Water Science and Technology Division, Environment Canada, L7R 4A6, Burlington, Ontario, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hewitt", 
        "givenName": "L. Mark", 
        "id": "sg:person.01101436313.96", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01101436313.96"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Water Science and Technology Division, Environment Canada, L7R 4A6, Burlington, Ontario, Canada", 
          "id": "http://www.grid.ac/institutes/grid.410334.1", 
          "name": [
            "Water Science and Technology Division, Environment Canada, L7R 4A6, Burlington, Ontario, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Frank", 
        "givenName": "Richard A.", 
        "id": "sg:person.0775554050.79", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0775554050.79"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Water Science and Technology Division, Environment Canada, S7N3H5, Saskatoon, Saskatchewan, Canada", 
          "id": "http://www.grid.ac/institutes/grid.410334.1", 
          "name": [
            "Water Science and Technology Division, Environment Canada, S7N3H5, Saskatoon, Saskatchewan, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Headley", 
        "givenName": "John V.", 
        "id": "sg:person.01272763020.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01272763020.50"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1016/j.jasms.2007.03.030", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034370354", 
          "https://doi.org/10.1016/j.jasms.2007.03.030"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/468499a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047668871", 
          "https://doi.org/10.1038/468499a"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1016/s1044-0305(00)00163-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001014007", 
          "https://doi.org/10.1016/s1044-0305(00)00163-x"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-06-27", 
    "datePublishedReg": "2015-06-27", 
    "description": "There is a growing need for environmental screening of natural waters in the Athabasca region of Alberta, Canada, particularly in the differentiation between anthropogenic and naturally-derived organic compounds associated with weathered bitumen deposits. Previous research has focused primarily upon characterization of naphthenic acids in water samples by negative-ion electrospray ionization methods. Atmospheric pressure photoionization is a much less widely used ionization method, but one that affords the possibility of observing low polarity compounds that cannot be readily observed by electrospray ionization. This study describes the first usage of atmospheric pressure photoionization Fourier transform ion cyclotron resonance mass spectrometry (in both positive-ion and negative-ion modes) to characterize and compare extracts of oil sands process water, river water, and groundwater samples from areas associated with oil sands mining activities. When comparing mass spectra previously obtained by electrospray ionization and data acquired by atmospheric pressure photoionization, there can be a doubling of the number of components detected. In addition to polar compounds that have previously been observed, low-polarity, sulfur-containing compounds and hydrocarbons that do not incorporate a heteroatom were detected. These latter components, which are not amenable to electrospray ionization, have potential for screening efforts within monitoring programs of the oil sands.Graphical Abstract\u115f", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s13361-015-1188-9", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1100508", 
        "issn": [
          "1044-0305", 
          "1879-1123"
        ], 
        "name": "Journal of The American Society for Mass Spectrometry", 
        "publisher": "American Chemical Society (ACS)", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "9", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "26"
      }
    ], 
    "keywords": [
      "ion cyclotron resonance mass spectrometry", 
      "cyclotron resonance mass spectrometry", 
      "atmospheric pressure photoionization", 
      "resonance mass spectrometry", 
      "ionization methods", 
      "atmospheric pressure photoionization (APPI) Fourier transform ion cyclotron resonance mass spectrometry", 
      "atmospheric pressure photoionization Fourier", 
      "Fourier transform ion cyclotron resonance mass spectrometry", 
      "transform ion cyclotron resonance mass spectrometry", 
      "naphthenic acids", 
      "mass spectrometry", 
      "oil sands process water", 
      "sulfur-containing compounds", 
      "low polarity compounds", 
      "electrospray ionization method", 
      "electrospray ionization", 
      "organic compounds", 
      "polar compounds", 
      "natural waters", 
      "oil sands industry", 
      "environmental screening", 
      "mass spectra", 
      "water samples", 
      "process water", 
      "compounds", 
      "river water", 
      "Athabasca region", 
      "natural sources", 
      "oil sands", 
      "spectrometry", 
      "ionization", 
      "water", 
      "bitumen deposits", 
      "groundwater samples", 
      "heteroatoms", 
      "photoionization", 
      "acid", 
      "Fourier", 
      "hydrocarbons", 
      "oil sands mining activities", 
      "spectra", 
      "characterization", 
      "samples", 
      "mining activities", 
      "Graphical", 
      "anthropogenic", 
      "method", 
      "sand mining activities", 
      "potential", 
      "screening", 
      "latter component", 
      "extracts", 
      "first usage", 
      "addition", 
      "components", 
      "deposits", 
      "activity", 
      "source", 
      "number of components", 
      "industry", 
      "possibility", 
      "sand", 
      "one", 
      "area", 
      "Alberta", 
      "study", 
      "Canada", 
      "region", 
      "doubling", 
      "number", 
      "data", 
      "efforts", 
      "usage", 
      "research", 
      "need", 
      "previous research", 
      "differentiation", 
      "program", 
      "negative-ion electrospray ionization methods", 
      "pressure photoionization", 
      "polarity compounds", 
      "pressure photoionization Fourier", 
      "photoionization Fourier", 
      "sands process water", 
      "Athabasca Oil Sands Industry", 
      "Sands Industry", 
      "Pressure Photoionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry", 
      "Photoionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry"
    ], 
    "name": "Beyond Naphthenic Acids: Environmental Screening of Water from Natural Sources and the Athabasca Oil Sands Industry Using Atmospheric Pressure Photoionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry", 
    "pagination": "1508-1521", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1050580436"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s13361-015-1188-9"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "26115966"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s13361-015-1188-9", 
      "https://app.dimensions.ai/details/publication/pub.1050580436"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:34", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_649.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s13361-015-1188-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s13361-015-1188-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s13361-015-1188-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s13361-015-1188-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s13361-015-1188-9'


 

This table displays all metadata directly associated to this object as RDF triples.

209 TRIPLES      22 PREDICATES      118 URIs      106 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s13361-015-1188-9 schema:about anzsrc-for:03
2 anzsrc-for:0301
3 anzsrc-for:0306
4 schema:author Ne3ac7cfee7df44f9be709741e0fb9967
5 schema:citation sg:pub.10.1016/j.jasms.2007.03.030
6 sg:pub.10.1016/s1044-0305(00)00163-x
7 sg:pub.10.1038/468499a
8 schema:datePublished 2015-06-27
9 schema:datePublishedReg 2015-06-27
10 schema:description There is a growing need for environmental screening of natural waters in the Athabasca region of Alberta, Canada, particularly in the differentiation between anthropogenic and naturally-derived organic compounds associated with weathered bitumen deposits. Previous research has focused primarily upon characterization of naphthenic acids in water samples by negative-ion electrospray ionization methods. Atmospheric pressure photoionization is a much less widely used ionization method, but one that affords the possibility of observing low polarity compounds that cannot be readily observed by electrospray ionization. This study describes the first usage of atmospheric pressure photoionization Fourier transform ion cyclotron resonance mass spectrometry (in both positive-ion and negative-ion modes) to characterize and compare extracts of oil sands process water, river water, and groundwater samples from areas associated with oil sands mining activities. When comparing mass spectra previously obtained by electrospray ionization and data acquired by atmospheric pressure photoionization, there can be a doubling of the number of components detected. In addition to polar compounds that have previously been observed, low-polarity, sulfur-containing compounds and hydrocarbons that do not incorporate a heteroatom were detected. These latter components, which are not amenable to electrospray ionization, have potential for screening efforts within monitoring programs of the oil sands.Graphical Abstractᅟ
11 schema:genre article
12 schema:inLanguage en
13 schema:isAccessibleForFree false
14 schema:isPartOf N2cddd3b6f7b44d279dd8d0a16682233d
15 Nb44a4ff3cda24a27bbba15e15ffdc8dd
16 sg:journal.1100508
17 schema:keywords Alberta
18 Athabasca Oil Sands Industry
19 Athabasca region
20 Canada
21 Fourier
22 Fourier transform ion cyclotron resonance mass spectrometry
23 Graphical
24 Photoionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry
25 Pressure Photoionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry
26 Sands Industry
27 acid
28 activity
29 addition
30 anthropogenic
31 area
32 atmospheric pressure photoionization
33 atmospheric pressure photoionization (APPI) Fourier transform ion cyclotron resonance mass spectrometry
34 atmospheric pressure photoionization Fourier
35 bitumen deposits
36 characterization
37 components
38 compounds
39 cyclotron resonance mass spectrometry
40 data
41 deposits
42 differentiation
43 doubling
44 efforts
45 electrospray ionization
46 electrospray ionization method
47 environmental screening
48 extracts
49 first usage
50 groundwater samples
51 heteroatoms
52 hydrocarbons
53 industry
54 ion cyclotron resonance mass spectrometry
55 ionization
56 ionization methods
57 latter component
58 low polarity compounds
59 mass spectra
60 mass spectrometry
61 method
62 mining activities
63 naphthenic acids
64 natural sources
65 natural waters
66 need
67 negative-ion electrospray ionization methods
68 number
69 number of components
70 oil sands
71 oil sands industry
72 oil sands mining activities
73 oil sands process water
74 one
75 organic compounds
76 photoionization
77 photoionization Fourier
78 polar compounds
79 polarity compounds
80 possibility
81 potential
82 pressure photoionization
83 pressure photoionization Fourier
84 previous research
85 process water
86 program
87 region
88 research
89 resonance mass spectrometry
90 river water
91 samples
92 sand
93 sand mining activities
94 sands process water
95 screening
96 source
97 spectra
98 spectrometry
99 study
100 sulfur-containing compounds
101 transform ion cyclotron resonance mass spectrometry
102 usage
103 water
104 water samples
105 schema:name Beyond Naphthenic Acids: Environmental Screening of Water from Natural Sources and the Athabasca Oil Sands Industry Using Atmospheric Pressure Photoionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry
106 schema:pagination 1508-1521
107 schema:productId N376cfcea9499493598bf832a172829a0
108 N51b278b184e244f49d7a1ccfd47e9ffd
109 Nf931c61f767d41088f83e2807675189a
110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050580436
111 https://doi.org/10.1007/s13361-015-1188-9
112 schema:sdDatePublished 2022-01-01T18:34
113 schema:sdLicense https://scigraph.springernature.com/explorer/license/
114 schema:sdPublisher Na2cf20744a1c4f1ba2a2dc754a492b87
115 schema:url https://doi.org/10.1007/s13361-015-1188-9
116 sgo:license sg:explorer/license/
117 sgo:sdDataset articles
118 rdf:type schema:ScholarlyArticle
119 N2cddd3b6f7b44d279dd8d0a16682233d schema:issueNumber 9
120 rdf:type schema:PublicationIssue
121 N376cfcea9499493598bf832a172829a0 schema:name doi
122 schema:value 10.1007/s13361-015-1188-9
123 rdf:type schema:PropertyValue
124 N51b278b184e244f49d7a1ccfd47e9ffd schema:name pubmed_id
125 schema:value 26115966
126 rdf:type schema:PropertyValue
127 N5510c64fbe254bc78c2e2fa9881a01ee rdf:first sg:person.0775554050.79
128 rdf:rest Nb463edf6f6f142d5b25958221135d984
129 N741c9282fd0041f6a1c6e3d5c4fcf1a5 rdf:first sg:person.01101436313.96
130 rdf:rest N5510c64fbe254bc78c2e2fa9881a01ee
131 N7f1383988ebf4f269258b4d1c8a196dd rdf:first sg:person.0743310216.07
132 rdf:rest N8130f02c853b459b83e87d0f0e14239d
133 N8130f02c853b459b83e87d0f0e14239d rdf:first sg:person.01160203235.73
134 rdf:rest N741c9282fd0041f6a1c6e3d5c4fcf1a5
135 Na2cf20744a1c4f1ba2a2dc754a492b87 schema:name Springer Nature - SN SciGraph project
136 rdf:type schema:Organization
137 Nb44a4ff3cda24a27bbba15e15ffdc8dd schema:volumeNumber 26
138 rdf:type schema:PublicationVolume
139 Nb463edf6f6f142d5b25958221135d984 rdf:first sg:person.01272763020.50
140 rdf:rest rdf:nil
141 Ne3ac7cfee7df44f9be709741e0fb9967 rdf:first sg:person.0715434276.73
142 rdf:rest N7f1383988ebf4f269258b4d1c8a196dd
143 Nf931c61f767d41088f83e2807675189a schema:name dimensions_id
144 schema:value pub.1050580436
145 rdf:type schema:PropertyValue
146 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
147 schema:name Chemical Sciences
148 rdf:type schema:DefinedTerm
149 anzsrc-for:0301 schema:inDefinedTermSet anzsrc-for:
150 schema:name Analytical Chemistry
151 rdf:type schema:DefinedTerm
152 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
153 schema:name Physical Chemistry (incl. Structural)
154 rdf:type schema:DefinedTerm
155 sg:journal.1100508 schema:issn 1044-0305
156 1879-1123
157 schema:name Journal of The American Society for Mass Spectrometry
158 schema:publisher American Chemical Society (ACS)
159 rdf:type schema:Periodical
160 sg:person.01101436313.96 schema:affiliation grid-institutes:grid.410334.1
161 schema:familyName Hewitt
162 schema:givenName L. Mark
163 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01101436313.96
164 rdf:type schema:Person
165 sg:person.01160203235.73 schema:affiliation grid-institutes:grid.488584.d
166 schema:familyName Fahlman
167 schema:givenName Brian
168 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01160203235.73
169 rdf:type schema:Person
170 sg:person.01272763020.50 schema:affiliation grid-institutes:grid.410334.1
171 schema:familyName Headley
172 schema:givenName John V.
173 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01272763020.50
174 rdf:type schema:Person
175 sg:person.0715434276.73 schema:affiliation grid-institutes:grid.7372.1
176 schema:familyName Barrow
177 schema:givenName Mark P.
178 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0715434276.73
179 rdf:type schema:Person
180 sg:person.0743310216.07 schema:affiliation grid-institutes:grid.410334.1
181 schema:familyName Peru
182 schema:givenName Kerry M.
183 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0743310216.07
184 rdf:type schema:Person
185 sg:person.0775554050.79 schema:affiliation grid-institutes:grid.410334.1
186 schema:familyName Frank
187 schema:givenName Richard A.
188 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0775554050.79
189 rdf:type schema:Person
190 sg:pub.10.1016/j.jasms.2007.03.030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034370354
191 https://doi.org/10.1016/j.jasms.2007.03.030
192 rdf:type schema:CreativeWork
193 sg:pub.10.1016/s1044-0305(00)00163-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1001014007
194 https://doi.org/10.1016/s1044-0305(00)00163-x
195 rdf:type schema:CreativeWork
196 sg:pub.10.1038/468499a schema:sameAs https://app.dimensions.ai/details/publication/pub.1047668871
197 https://doi.org/10.1038/468499a
198 rdf:type schema:CreativeWork
199 grid-institutes:grid.410334.1 schema:alternateName Water Science and Technology Division, Environment Canada, L7R 4A6, Burlington, Ontario, Canada
200 Water Science and Technology Division, Environment Canada, S7N3H5, Saskatoon, Saskatchewan, Canada
201 schema:name Water Science and Technology Division, Environment Canada, L7R 4A6, Burlington, Ontario, Canada
202 Water Science and Technology Division, Environment Canada, S7N3H5, Saskatoon, Saskatchewan, Canada
203 rdf:type schema:Organization
204 grid-institutes:grid.488584.d schema:alternateName Environment and Carbon Management Division, Alberta Innovates-Technology Futures, T9C 1T4, Vegreville, Alberta, Canada
205 schema:name Environment and Carbon Management Division, Alberta Innovates-Technology Futures, T9C 1T4, Vegreville, Alberta, Canada
206 rdf:type schema:Organization
207 grid-institutes:grid.7372.1 schema:alternateName Department of Chemistry, University of Warwick, CV4 7AL, Coventry, UK
208 schema:name Department of Chemistry, University of Warwick, CV4 7AL, Coventry, UK
209 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...